High resolution detector developement based on solid boron layer DENIM J. Orban 7-9th September , 2015 Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future Detectors at BNC • Detectors based on 3He • Delay-line readout Detectors at BNC Instrument name Type Active area Resolution TAST PSD TOF ATHOS REF GINA SANS FSANS 200 mm X 200 mm 610 mm X O25 mm 1D tubes 1 mx1 m 200 mm X 200 mm 200 mm X 200 mm 200 mm X 200 mm 640 mm X 640 mm 200 mm X 200 mm 2 mm TAS Thermal diffractometer TOF backscattering Cold TAS Reflectometer Reflectometer SANS TOF-SANS 5 mm 2 mm 2 mm 2 mm 10 mm 2 mm Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future Motivation of own developement • Small size chambers for FSANS and REFL • Optimization of position resolution • Focusing technics • Miniaturazing • Optimization for count rate Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future Simulation 7Li(1015 keV) + 10B α(1777keV) 6% α(1470keV) + γ(480keV) 94% +n 7Li(840 keV) + Ionization model TRIM Simulation of the ionization process Simulation of the detection process Simulation Neutron path Ionization Parameters: • Neutron penetration depth • α angle • β angle • α or 7Li Simulation Ionization by α 1470 keV Ionization by 7Li 840 keV 70 1400000 60 1200000 50 1000000 40 800000 30 600000 20 400000 10 200000 0 0 Penetration depth [um] Ionization by α 1470 keV Energy loss Total energy loss Remaining energy 80 Lithium ionization energy loss vs. boron thickness 1600000 70 1400000 60 1200000 50 1000000 40 800000 30 600000 20 400000 10 200000 0 Energy [eV] 1600000 Energy loss [eV/A/ion] 80 Alpha ionization energy loss vs. boron thickness Energy [eV] Energy loss [eV/A/ion] Simulation 0 Penetration depth [um] Ionization by 7Li 840 keV Energy loss Total energy loss Remaining energy Simulation Ionization length in CF4 vs. remained energy (Li) 3.5 3 2.5 2 1 bar 1.5 1,5 bar 2bar 1 0.5 Ionization length [mm] Ionization length [mm] Ionization length in CF4 vs. remained energy (α) 3.5 3 2.5 2 1 bar 1.5 1,5 bar 2bar 1 0.5 0 0 0 500 1000 1500 Remained energy [keV] Ionization length in CF4 by α 2000 0 500 1000 Remained energy [keV] Ionization length in CF4 by 7Li 1500 Simulation Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future B4C layer sputtering at Mirrotron LTD • B4C layer with different thicknesses • Characterization of the layers made by Wigner • DC Magnetron sputtering • Polished aluminium substrate • Collaboration with Mirrotron LTD in prototype fabricationsupport Prototype detector • Thickness of boron layer: 1.5um • Wire pitch: 0.8 mm • Active area: 80 mm X 50 mm • Readout: delay-line • Filling gas: 2 bars CF4 • Anode - cathode distance: 3.2 mm • Cathode - Boron layer distance: 2 mm • 10 um / 30 um wire diameters • Back cathode: PCB with conductive lines Experimental results:resolution Position resolution at 4200V Position resolution at 4300V 25000 1400 1200 Intensity [counts] Intensity [counts] 20000 15000 10000 5000 0 1 6 11 16 1000 800 600 400 200 0 21 1 6 Position [pixels] Position resolution at 4400V 16 21 Position resolution at 4500V 1000 900 800 700 600 500 400 300 200 100 0 4000 3500 Intensity [counts] Intensity [counts] 11 Position [pixels] 1 6 11 Position [pixels] 16 21 3000 2500 2000 1500 1000 500 0 1 6 11 Position [pixels] 16 21 Experimental results:resolution Position resolution vs. anode high voltage • Position resolution is saturated at 0.7 mm (FWHM) Position resolution [mm] 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 4000 4100 4200 4300 4400 Anode high voltage [V] 4500 4600 Experimental results: linearity Slit scanning 14000 • Detector is moved behind the slit by 0,25 mm steps 12000 10000 8000 6000 4000 2000 0 1 6 11 16 Experimental results:linearity Position linearity 2.5 • Detector is moved behind the slit by 0,25 mm steps Measured position [mm] 2 1.5 1 0.5 0 0 0.5 1 1.5 Real position [mm] 2 2.5 Experimental results: homogeneity Experimental results: dead time • Anode signal width: 100 ns • Cathode signal width: 50 ns • Length of delay line: 200 ns • Conservative estimation: 250 ns dead time • Global count rate capability › 4*105 events/s at 10% loss • Global and local count rate capability is not measurable due to low efficiency • Beam flux was too low for local count rate measurement Contents • Detectors at BNC • Detectors based on solid boron converter • Motivation • Simulation • Prototype detector / Experimental results • Conclusion / Future Conclusions • Boron detector is a good candidate for our plans • Delay-ine readout is a good compromise for low-cost read-out • 0.7 mm position resolution is achieved with solid boron layer • 0.8 mm wire pitch is a limitation • Count rate capability and position resolution is sufficient for our applications • Position linearity is good Future • Investigation of the possibility of smaller wire pitch • Multigrid construction for high efficiency • TPC algorithm with delay-line readout to decrease the dispersion of position resolution • Further measurements (characterization of local count rate capability, efficiency, gamma sensitivity…) Thank you for your attention!
© Copyright 2026 Paperzz