Homework Assignment 9 - (11.3) - Solutions Page 880: 8*, 10*, 12*, 16*, 18*, 22*, 26*, 28*, 37*, 42(a)*, 46*, 47*, 48* 8. !r!t" "# 25te !2t , ! 16t 2 $ 10t $ 20 % & ! v!t" " !r !t" "# 25e !2t ! 50te !2t , !32t $ 10 % && ! a!t" " !r !t" "# !100e !2t $ 100te !2t , !32 % 10. !r!t" "# 3e !3t , sin!2t", t 3 ! 3t % !r & !t" " # !9e !3t , 2 cos 2t, 3t 2 ! 3 %, && !r !t" "# 27e !3t , !4 sin 2t, 6t % 12. ! v!t" "# 4t, t 2 ! 1 %, !r!0" "# 10, ! 2 % !r!t" " " !v!t"dt "# 2t 2 , 1 t 3 ! t % $C ! 3 ! "# 10, ! 2 %, C ! "# 10, ! 2 %, !r!t" "# 2t 2 $ 10, 1 t 3 ! t ! 2 % !r!0" "# 0, 0 % $C 3 16. ! v!t" "# t $ 2, t 2 , e !t/3 %, !r!0" "# 4, 0, !3 % " !v!t" dt "# 1 t 2 $ 2t, 1 t 3 , ! 3e !t/3 % $C ! 2 3 ! "# 4, 0, ! 3 %, C ! "# 4, 0, ! 3 % ! # 0, 0, ! 3 %"# 4, 0, 0 % !r!0" "# 0, 0, ! 3 % $C !r!t" "# 1 t 2 $ 2t $ 4, 1 t 3 , ! 3e !t/3 % 3 2 !r!t" " v!0" "# 4, ! 2, 4 %, !r!0" "# 0, 4, ! 2 % 18. ! a!t" "# e !3t , t, sin t %, ! ! 1 "# ! 1 e !3t , 1 t 2 , ! cos t % $C ! ! v!t" " " ! a!t" dt " " e !3t , t, sin t dt $ C 3 2 ! "# 4, ! 2, 4 %, C ! "# 13 , ! 2, 5 %, ! v!0" "# ! 1 , 0, ! 1 % $C 3 3 13 1 1 !3t 2 ! t ! 2, ! cos t $ 5 % v!t" "# ! e $ , 3 2 3 ! !r!t" "# 1 e !3t $ 13 t, 1 t 3 ! 2t, ! sin t $ 5t % $C 9 3 6 ! "# 0, 4, ! 2 %, C ! "# ! 1 , 4, ! 2 % !r!0" "# 1 , 0, 0 % $C 9 9 1 13 1 1 !3t 3 !r!t" "# e $ t! , t ! 2t $ 4, ! sin t $ 5t ! 2 % 9 6 3 9 22. !r!t" "# 2 cos 3t, 2 sin 3t % ! v!t" "# !6 sin 3t, 6 cos 3t %, ! a!t" "# !18 cos 3t, ! 18 sin 3t % ! !t" " ma !!t" " !180 # cos 3t, sin 3t % F 26. !r!t" "# 20t ! 3, ! 16t 2 $ 2t $ 30 % ! v!t" "# 20, ! 32t $ 2 %, ! a!t" "# 0, ! 32 % ! !t" " ma !!t" " 10 # 0, !32 %" !320 # 0, 1 % F 1 28. v 0 " 100, h " 0, ! " " 6 ! v!0" " 100 # cos " , sin " %"# 50 3 , 50 %, !r!0" "# 0, 0 % 6 6 2 ! a!t" " # 0, !g % g # 32 ft/sec !, ! ! v!t" " # 0, !32t % $C v!0" "# 50 3 , 50 %, ! v!t" "# 50 3 , !32t $ 50 %, ! , !r!0" "# 0, 0 % $C ! "# 0, 0 %, C ! "# 0, 0 % !r!t" " # 50 3 t, !16t 2 $ 50t % $C !r!t" " # 50 3 t, ! 16t 2 $ 50t %"# f!t", g!t" % 30 20 10 0 50 100 150 200 250 !r!t", 0 $ t $ 3 ! The maximum altitude: let t 0 be the time when the projectile reaches its maximum altitude, then g & !t 0 " in ! v!t 0 " is 0. Solve for t 0 : ! 32t $ 50 " 0, t " 50 " 1. 56, t 0 " 1. 56 seconds 32 Then the maximum altitude is the value of g!t 0 " in !r!t 0 " 2 $ 50 50 " 625 " 39. 06 feet maximum altitude " !16 50 16 32 32 ! The horizontal range: the projectile reaches its maximum range when it hit the ground, let the time be t 1 , then the value of g!t 1 " in !r!t 1 " is 0. Solve for t 1 : ! 16t 2 $ 50t " 0, t!!16t $ 50" " 0, t " 0 or t " 50 " 3. 125 seconds 16 t 1 " 3. 125 seconds The maximum range is the value of f!t 1 " in !r!t 1 " maximum range " 50 3 50 16 " 270. 63 feet ! The speed at impact of projectile is ||v!!t 1 "|| speed at impact " 2 50 3 2 $ !32 50 16 $ 50 2 " 100. 0 feet/second 37. A baseball is hit from a height of 3 feet with initial speed 120 feet/second and at an angle of 30 degrees above the horizontal. Find a vector-valued function describing the position of the ball t seconds after it is hit. To be a home run, the ball must clear a wall that is 385 feet away and 6 tall. Determine if this is a home run. ! v!0" "# 60 3 , 60 %, !r!t" "# 0, 3 %, ! a!t" "# 0, !32 % ! v!t" "# 60 3 , 60 ! 32t %, !r!t" "# 60 3 t, ! 16t 2 $ 60t $ 3 % t " 385 " 3. 704 664 seconds 60 3 385 60 3 So, it is not a home run. y " !16 385 60 3 2 $ 60 385 60 3 $ 3 " 5. 687 261 # 6 42!a" A tennis serve is struck horizontally from a height of 8 feet with initial speed 120 feet per second. For being in, the ball must clear a net which is 39 feet away and 3 feet high and must land before the service line 60 feet away. Find a vector function for the position of the ball and determine if this serve is in or out. ! v!t" "# 80, !32t %, !r!t" "# 80t, ! 16t 2 $ 8 %"# x!t", y!t" % Let t 1 be the time when the ball is 39 feet away. Then t 1 " 39 " 0. 487 5 80 Check to see if y!t 1 " % 3 : 2 y 39 " !16 39 $ 8 " 4. 197 5 % 3 feet 80 80 Let t 2 be the time when the ball hits the ground. 2 ! 16t 2 $ 8 " 0, t 2 " 1 , t 2 " 2 2 Check to see if the ball is within 60 feet. x 1 2 " 80 1 2 " 56. 568 54 # 60 feet 2 2 So, the serve is in!! 46. Let the positive y !axis point north, we have ! v!0" " 100 # cos " 6 !, ! v!t" "# 0, !4t, !32t % $C the positive x !axis point east and the positive z !axis point up. Then , 0, sin " 6 %, ! a!t" "# 0, !4, !32 %, !r!0" "# 0, 0, 0 % ! "# 50 3 , 0, 50 % ! "# 50 3 , 0, 50 %, C ! v!0" "# 0, 0, 0 % $C ! v!t" "# 50 3 , !4t, !32t $ 50 % ! , !r!0" "# 0, 0, 0 % $C ! "# 0, 0, 0 % !r!t" " # 50 3 t, ! 2t 2 , ! 16t 2 $ 50t % $C ! "! C 0 and !r!t" "# 50 3 t, ! 2t 2 , ! 16t 2 $ 50t %"# f!t", g!t", h!t" % 3 30 20 z 10 250 200 150 x 100 50 0 y !r!t", 0 $ t $ 20 the landing location: let t 0 be the time when the projectile lands. Then h!t 0 " " 0. Solve for t 0 ! 16t 2 $ 50t " t!!16t $ 50" " 0, t " 0, t 0 " 50 " 3. 124 seconds 16 2 2 !r!t 0 " "# 50 3 50 , ! 2 50 , ! 16 50 $ 50 50 % 16 16 16 16 "# 270. 63, ! 19. 53, 0 % feet ! " mg ! "# 2t, 0, 24 % ! " m # 0, 0, !32 %, w ! "# 0, 1, 0 %, 0 $ t $ 1, w ! "# 0, 2, 0 %, t % 1, E 47. F ! v!0" "# 100, 0, 10 % ! " ma ! " mg !$w ! $! F e" ! $! When m " 1, ! a!t" " ! g$w e" ! v!t" " # 2t, 1, ! 8 %, 0 $ t $ 1 # 2t, 2, ! 8 %, t % 1 # 2t, 1, ! 8 %, 0 $ t $ 1 # 2t, 2, ! 8 %, t % 1 " !a!t" dt " . ! 1, 0 $ t $ 1 # t 2 , t, ! 8t % $C ! 2, t % 1 # t 2 , 2t, ! 8t % $C ! 1 "# 100, 0, 10 % ! 1 "# 100, 0, 10 %, C ! v!0" "# 0, 0, 0 % $C ! v!t" "# t 2 $ 100, t, ! 8t $ 10 %, 0 $ t $ 1 v!t" from the left and from the should be the same since the velocity is a continuous For t " 1, values of ! function. So, as t approaches 1 from the left: ! v!1" "# 101, 1, 2 % and from the right: ! 2 "# 100, ! 1, 10 % ! 2 "# 101, 1, 2 %, C ! v!1" "# 1, 2, ! 8 % $C ! v!t" "# t 2 , 2t, ! 8t % $ # 100, ! 1, 10 %"# t 2 $ 100, 2t ! 1, ! 8t $ 10 % ! v!t" " 4 # t 2 $ 100, t, ! 8t $ 10 %, 2 0$t$1 # t $ 100, 2t ! 1, ! 8t $ 10 %, t % 1 a!1" "# 2, 1, ! 8 %% lim t'1 $ ! a!1" "# 2, 2, ! 8 %, ! v is not differentiable at v & !t" " ! Since ! a!t" and lim t'1 ! ! t " 1. It is reasonable since the wind force had a sudden change at t " 1. 10 106 104t 5 100 0 102 0 1 2 y 3 4 -5 5 -10 v!t", 0 $ t $ 1, ... ! –! v!t", t % 1 48. !r!t" " " !v!t" dt " ! 1, 0 $ t $ 1 ! 4t 2 $ 10t % $C ! 2, t % 1 # 13 t 3 $ 100t, t 2 ! t, ! 4t 2 $ 10t % $C # 1 3 t 3 $ 100t, 1 2 t , 2 Assume that !r!0" "# 0, 0, 0 % and !r!t" is a continuous function so values of !r!1" from both sides should be the same. !1 " ! ! 1 "# 0, 0, 0 %, C !r!0" "# 0, 0, 0 % $C 0 ! 2 from the right from the left, !r!1" "# 301 , 1 , 6 %"# 301 , 0, 6 % $C 2 3 3 ! 2 "# 0, 1 , 0 % and !r!t" " so, C 2 5 # # 1 3 t 3 1 3 t 3 $ 100t, 1 2 t , 2 2 ! 4t 2 $ 10t %, $ 100t, t ! t $ 1 2 0$t$1 , ! 4t 2 $ 10t %, t%1 5 200 300 t 100 0 -5 2 y 4 – !r!t", 0 $ t $ 1, ... !r!t", t % 1 6 6
© Copyright 2026 Paperzz