4100 AWL/Thomas_ch03p147-243 8/19/04 11:17 AM Page 227 3.8 EXAMPLE 5 Linearization and Differentials 227 Finding Differentials of Functions (a) dstan 2xd = sec2s2xd ds2xd = 2 sec2 2x dx sx + 1d dx - x dsx + 1d x x dx + dx - x dx dx (b) d a b = = = 2 2 x + 1 sx + 1d sx + 1d sx + 1d2 Estimating with Differentials Suppose we know the value of a differentiable function ƒ(x) at a point a and want to predict how much this value will change if we move to a nearby point a + dx. If dx is small, then we can see from Figure 3.51 that ¢y is approximately equal to the differential dy. Since ƒsa + dxd = ƒsad + ¢y, the differential approximation gives ƒsa + dxd L ƒsad + dy where dx = ¢x. Thus the approximation ¢y L dy can be used to calculate ƒsa + dxd when ƒ(a) is known and dx is small. EXAMPLE 6 dr 0.1 Estimating with Differentials The radius r of a circle increases from a = 10 m to 10.1 m (Figure 3.52). Use dA to estimate the increase in the circle’s area A. Estimate the area of the enlarged circle and compare your estimate to the true area. a 10 Solution dA = A¿sad dr = 2pa dr = 2ps10ds0.1d = 2p m2 . A ≈ dA 2 a dr FIGURE 3.52 When dr is small compared with a, as it is when dr = 0.1 and a = 10 , the differential dA = 2pa dr gives a way to estimate the area of the circle with radius r = a + dr (Example 6). Since A = pr 2 , the estimated increase is Thus, As10 + 0.1d L As10d + 2p = ps10d2 + 2p = 102p. The area of a circle of radius 10.1 m is approximately 102p m2 . The true area is As10.1d = ps10.1d2 = 102.01p m2 . The error in our estimate is 0.01p m2 , which is the difference ¢A - dA. Error in Differential Approximation Let ƒ(x) be differentiable at x = a and suppose that dx = ¢x is an increment of x. We have two ways to describe the change in ƒ as x changes from a to a + ¢x: The true change: The differential estimate: ¢ƒ = ƒsa + ¢xd - ƒsad dƒ = ƒ¿sad ¢x. How well does dƒ approximate ¢ƒ? Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley 4100 AWL/Thomas_ch03p147-243 8/19/04 11:17 AM Page 232 232 Chapter 3: Differentiation Linearizing Trigonometric Functions y y f (x) In Exercises 11–14, find the linearization of ƒ at x = a . Then graph the linearization and ƒ together. 11. ƒsxd = sin x at sad x = 0, sbd x = p f f(x 0 dx) f(x 0) 12. ƒsxd = cos x at sad x = 0, sbd x = -p>2 13. ƒsxd = sec x at sad x = 0, sbd x = -p>3 14. ƒsxd = tan x at sad x = 0, (x 0, f (x 0 )) dx Tangent sbd x = p>4 0 The Approximation s1 xdk « 1 kx 15. Show that the linearization of ƒsxd = s1 + xdk at x = 0 is Lsxd = 1 + kx . 16. Use the linear approximation s1 + xdk L 1 + kx to find an approximation for the function ƒ(x) for values of x near zero. a. ƒsxd = s1 - xd6 c. ƒsxd = b. ƒsxd = 1 e. ƒsxd = s4 + 3xd1>3 f. ƒsxd = 3 a1 - 1 b 2 + x Derivatives in Differential Form In Exercises 19–30, find dy. 21. y = 20. y = x21 - x 2x 1 + x2 22. y = 2 21x 3s1 + 1xd 23. 2y 3>2 + xy - x = 0 24. xy 2 - 4x 3>2 - y = 0 25. y = sin s51xd 26. y = cos sx 2 d 27. y = 4 tan sx 3>3d 29. y = 3 csc s1 - 2 1xd 3 33. ƒsxd = x - x, 34. ƒsxd = x 4, x0 = 1, x0 = 1, dx = 0.1 x0 = -1, dx = 0.1 dx = 0.1 dx = 0.1 x0 = 0.5, dx = 0.1 x0 = 2, dx = 0.1 Differential Estimates of Change 2 18. Find the linearization of ƒsxd = 2x + 1 + sin x at x = 0 . How is it related to the individual linearizations of 2x + 1 and sin x at x = 0 ? 19. y = x - 31x x0 = 1, 32. ƒsxd = 2x 2 + 4x - 3, 36. ƒsxd = x 3 - 2x + 3, B 17. Faster than a calculator Use the approximation s1 + xdk L 1 + kx to estimate the following. 3 a. s1.0002d50 b. 2 1.009 3 31. ƒsxd = x 2 + 2x, x x 0 dx x0 35. ƒsxd = x -1, 2 1 - x d. ƒsxd = 22 + x 2 21 + x df f '(x 0 ) dx In Exercises 37–42, write a differential formula that estimates the given change in volume or surface area. 37. The change in the volume V = s4>3dpr 3 of a sphere when the radius changes from r0 to r0 + dr 38. The change in the volume V = x 3 of a cube when the edge lengths change from x0 to x0 + dx 39. The change in the surface area S = 6x 2 of a cube when the edge lengths change from x0 to x0 + dx 40. The change in the lateral surface area S = pr2r 2 + h 2 of a right circular cone when the radius changes from r0 to r0 + dr and the height does not change 41. The change in the volume V = pr 2h of a right circular cylinder when the radius changes from r0 to r0 + dr and the height does not change 42. The change in the lateral surface area S = 2prh of a right circular cylinder when the height changes from h0 to h0 + dh and the radius does not change 28. y = sec sx 2 - 1d Applications 30. y = 2 cot a 43. The radius of a circle is increased from 2.00 to 2.02 m. 1 b 1x Approximation Error In Exercises 31–36, each function ƒ(x) changes value when x changes from x0 to x0 + dx . Find a. the change ¢ƒ = ƒsx0 + dxd - ƒsx0 d ; b. the value of the estimate df = ƒ¿sx0 d dx ; and c. the approximation error ƒ ¢ƒ - dƒ ƒ . a. Estimate the resulting change in area. b. Express the estimate as a percentage of the circle’s original area. 44. The diameter of a tree was 10 in. During the following year, the circumference increased 2 in. About how much did the tree’s diameter increase? The tree’s cross-section area? 45. Estimating volume Estimate the volume of material in a cylindrical shell with height 30 in., radius 6 in., and shell thickness 0.5 in. Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley
© Copyright 2025 Paperzz