Lesson 17: Distance on the Coordinate Plane

Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Lesson 17: Distance on the Coordinate Plane
Student Outcomes
ο‚§
Students determine the distance between two points on a coordinate plane using the Pythagorean theorem.
Lesson Notes
Calculators are helpful in this lesson for determining values of radical expressions.
Classwork
Example 1 (6 minutes)
Example 1
What is the distance between the two points 𝑨 and 𝑩 on the coordinate plane?
ο‚§
What is the distance between the two points 𝐴 and 𝐡 on the coordinate plane?
οƒΊ
The distance between points 𝐴 and 𝐡 is 6 units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
Scaffolding:
Students may benefit from
physically measuring lengths to
understand finding distance.
230
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
What is the distance between the two points 𝑨 and 𝑩 on the coordinate plane?
ο‚§
What is the distance between the two points 𝐴 and 𝐡 on the coordinate plane?
οƒΊ
The distance between points 𝐴 and 𝐡 is 2 units.
What is the distance between the two points 𝑨 and 𝑩 on the coordinate plane? Round your answer to the tenths place.
ο‚§
What is the distance between the two points 𝐴 and 𝐡 on the coordinate plane? Round your answer to the
tenths place.
Provide students time to solve the problem. Have students share their work and estimations of the distance between
the points. The questions that follow can be used to guide students’ thinking.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
231
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
ο‚§
Lesson 17
8β€’7
We cannot simply count units between the points because the line that connects 𝐴 to 𝐡 is not horizontal or
vertical. What have we done recently that allowed us to find the length of an unknown segment?
MP.1
&
MP.7
οƒΊ
ο‚§
The Pythagorean theorem allows us to determine the length of an unknown side of a right triangle.
Use what you know about the Pythagorean theorem to determine the distance between points 𝐴 and 𝐡.
Provide students time to solve the problem now that they know that the Pythagorean theorem can help them. If
necessary, the questions below can guide students’ thinking.
ο‚§
We must draw a right triangle so that |𝐴𝐡| is the hypotenuse. How can we construct the right triangle that we
need?
οƒΊ
Draw a vertical line through 𝐡 and a horizontal line through 𝐴. Or, draw a vertical line through 𝐴 and a
horizontal line through 𝐡.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
232
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
ο‚§
8β€’7
Let’s mark the point of intersection of the horizontal and vertical lines we drew as point 𝐢. What is the length
Μ…Μ…Μ…Μ… ? 𝐡𝐢
Μ…Μ…Μ…Μ… ?
of 𝐴𝐢
οƒΊ
ο‚§
Lesson 17
|𝐴𝐢| = 6 units, and |𝐡𝐢| = 2 units
Now that we know the lengths of the legs of the right triangle, we can determine the length of Μ…Μ…Μ…Μ…
𝐴𝐡 .
Remind students that because we are finding a length, we need only consider the positive value of the square root
because a negative length does not make sense. If necessary, remind students of this fact throughout their work in this
lesson.
οƒΊ
Let 𝑐 be the length of Μ…Μ…Μ…Μ…
𝐴𝐡 .
22 + 62 = 𝑐 2
4 + 36 = 𝑐
2
The distance between points 𝐴 and 𝐡 is
approximately 6.3 units.
40 = 𝑐 2
√40 = 𝑐
6.3 β‰ˆ 𝑐
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
233
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 17
8β€’7
Example 2 (6 minutes)
Example 2
Given two points 𝑨 and 𝑩 on the coordinate plane, determine the distance between them. First, make an estimate; then,
try to find a more precise answer. Round your answer to the tenths place.
Provide students time to solve the problem. Have students share their work and estimations of the distance between
the points. The questions below can be used to guide students’ thinking.
ο‚§
We know that we need a right triangle. How can we draw one?
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
234
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
οƒΊ
ο‚§
8β€’7
Draw a vertical line through 𝐡 and a horizontal line through 𝐴. Or draw a vertical line through 𝐴 and a
horizontal line through 𝐡.
Mark the point 𝐢 at the intersection of the horizontal and vertical lines. What do we do next?
οƒΊ
Count units to determine the lengths of the legs of the right triangle, and then use the Pythagorean
theorem to find |𝐴𝐡|.
Show the last diagram, and ask a student to explain the answer.
οƒΊ
|𝐴𝐢| = 3 units, and |𝐡𝐢| = 3 units. Let 𝑐 be |𝐴𝐡|.
32 + 32 = 𝑐 2
9 + 9 = 𝑐2
18 = 𝑐 2
√18 = 𝑐
4.2 β‰ˆ 𝑐
The distance between points 𝐴 and 𝐡 is approximately 4.2 units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
235
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Exercises 1–4 (12 minutes)
Students complete Exercises 1–4 independently.
Exercises 1–4
For each of the Exercises 1–4, determine the distance between points 𝑨 and 𝑩 on the coordinate plane. Round your
answer to the tenths place.
1.
Let 𝒄 represent |𝑨𝑩|.
πŸ“πŸ + πŸ”πŸ = π’„πŸ
πŸπŸ“ + πŸ‘πŸ” = π’„πŸ
πŸ”πŸ = π’„πŸ
βˆšπŸ”πŸ = 𝒄
πŸ•. πŸ– β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about
πŸ•. πŸ– units.
2.
Let 𝒄 represent |𝑨𝑩|.
πŸπŸ‘πŸ + πŸ’πŸ = π’„πŸ
πŸπŸ”πŸ— + πŸπŸ” = π’„πŸ
πŸπŸ–πŸ“ = π’„πŸ
βˆšπŸπŸ–πŸ“ = 𝒄
πŸπŸ‘. πŸ” β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about πŸπŸ‘. πŸ” units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
236
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
3.
Let 𝒄 represent |𝑨𝑩|.
πŸ‘πŸ + πŸ“πŸ = π’„πŸ
πŸ— + πŸπŸ“ = π’„πŸ
πŸ‘πŸ’ = π’„πŸ
βˆšπŸ‘πŸ’ = 𝒄
πŸ“. πŸ– β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about πŸ“. πŸ– units.
4.
Let 𝒄 represent |𝑨𝑩|.
πŸ“πŸ + πŸ’πŸ = π’„πŸ
πŸπŸ“ + πŸπŸ” = π’„πŸ
πŸ’πŸ = π’„πŸ
βˆšπŸ’πŸ = 𝒄
πŸ”. πŸ’ β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about πŸ”. πŸ’ units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
237
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
NYS COMMON CORE MATHEMATICS CURRICULUM
Lesson 17
8β€’7
Example 3 (14 minutes)
ο‚§
Is the triangle formed by the points 𝐴, 𝐡, 𝐢 a right triangle?
Provide time for small groups of students to discuss and determine if the triangle formed is a right triangle. Have
students share their reasoning with the class. If necessary, use the questions below to guide their thinking.
Example 3
Is the triangle formed by the points 𝑨, 𝑩, π‘ͺ a right triangle?
ο‚§
How can we verify if a triangle is a right triangle?
οƒΊ
ο‚§
Use the converse of the Pythagorean theorem.
What information do we need about the triangle in order to use the converse of the Pythagorean theorem,
and how would we use it?
οƒΊ
We need to know the lengths of all three sides; then, we can check to see if the side lengths satisfy the
Pythagorean theorem.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
238
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
ο‚§
Clearly, |𝐴𝐡| = 10 units. How can we determine |𝐴𝐢|?
οƒΊ
ο‚§
8β€’7
To find |𝐴𝐢|, follow the same steps used in the previous problem. Draw horizontal and vertical lines to
form a right triangle, and use the Pythagorean theorem to determine the length.
Determine |𝐴𝐢|. Leave your answer in square root form unless it is a perfect square.
οƒΊ
Let 𝑐 represent |𝐴𝐢|.
12 + 32 = 𝑐 2
1 + 9 = 𝑐2
10 = 𝑐 2
√10 = 𝑐
ο‚§
Now, determine |𝐡𝐢|. Again, leave your answer in square root form unless it is a perfect square.
οƒΊ
Let 𝑐 represent |𝐡𝐢|.
92 + 32 = 𝑐 2
81 + 9 = 𝑐 2
90 = 𝑐 2
√90 = 𝑐
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
239
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
ο‚§
8β€’7
The lengths of the three sides of the triangle are 10 units, √10 units, and √90 units. Which number
represents the hypotenuse of the triangle? Explain.
οƒΊ The side Μ…Μ…Μ…Μ…
𝐴𝐡 must be the hypotenuse because it is the longest side. When estimating the lengths of the
other two sides, I know that √10 is between 3 and 4, and √90 is between 9 and 10. Therefore, the side
that is 10 units in length is the hypotenuse.
ο‚§
Use the lengths 10, √10, and √90 to determine if the triangle is a right triangle.
οƒΊ
Sample response:
2
2
(√10) + (√90) = 102
10 + 90 = 100
100 = 100
ο‚§
Therefore, the points 𝐴, 𝐡, 𝐢 form a right triangle.
Closing (3 minutes)
Summarize, or ask students to summarize, the main points from the lesson.
ο‚§
To find the distance between two points on the coordinate plane, draw a right triangle, and use the
Pythagorean theorem.
ο‚§
To verify if a triangle in the plane is a right triangle, use both the Pythagorean theorem and its converse.
Lesson Summary
To determine the distance between two points on the coordinate plane, begin by connecting the two points. Then,
draw a vertical line through one of the points and a horizontal line through the other point. The intersection of the
vertical and horizontal lines forms a right triangle to which the Pythagorean theorem can be applied.
To verify if a triangle is a right triangle, use the converse of the Pythagorean theorem.
Exit Ticket (4 minutes)
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
240
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
Name
8β€’7
Date
Lesson 17: Distance on the Coordinate Plane
Exit Ticket
Use the following diagram to answer the questions below.
1.
Determine |𝐴𝐢|. Leave your answer in square root form unless it is a perfect square.
2.
Determine |𝐢𝐡|. Leave your answer in square root form unless it is a perfect square.
3.
Is the triangle formed by the points 𝐴, 𝐡, 𝐢 a right triangle? Explain why or why not.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
241
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Exit Ticket Sample Solutions
Use the following diagram to answer the questions below.
1.
Determine |𝑨π‘ͺ|. Leave your answer in square root form unless it is a perfect square.
Let 𝒄 represent |𝑨π‘ͺ|.
πŸ’πŸ + πŸ’πŸ = π’„πŸ
πŸπŸ” + πŸπŸ” = π’„πŸ
πŸ‘πŸ = π’„πŸ
βˆšπŸ‘πŸ = 𝒄
2.
Determine |π‘ͺ𝑩|. Leave your answer in square root form unless it is a perfect square.
Let 𝒅 represent |π‘ͺ𝑩|.
πŸ‘πŸ + πŸ’πŸ = π’…πŸ
πŸ— + πŸπŸ” = π’…πŸ
πŸπŸ“ = π’…πŸ
βˆšπŸπŸ“ = 𝒅
πŸ“=𝒅
3.
Is the triangle formed by the points 𝑨, 𝑩, π‘ͺ a right triangle? Explain why or why not.
Using the lengths πŸ“,βˆšπŸ‘πŸ, and |𝑨𝑩| = πŸ• to determine if the triangle is a right triangle, I have to check to see if
𝟐
πŸ“πŸ + (βˆšπŸ‘πŸ) = πŸ•πŸ
πŸπŸ“ + πŸ‘πŸ β‰  πŸ’πŸ—
Therefore, the triangle formed by the points 𝑨, 𝑩, π‘ͺ is not a right triangle because the lengths of the triangle do not
satisfy the Pythagorean theorem.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
242
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
Problem Set Sample Solutions
For each of the Problems 1–4, determine the distance between points 𝑨 and 𝑩 on the coordinate plane. Round your
answer to the tenths place.
1.
Let 𝒄 represent |𝑨𝑩|.
πŸ”πŸ + πŸ•πŸ = π’„πŸ
πŸ‘πŸ” + πŸ’πŸ— = π’„πŸ
πŸ–πŸ“ = π’„πŸ
βˆšπŸ–πŸ“ = 𝒄
πŸ—. 𝟐 β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about
πŸ—. 𝟐 units.
2.
Let 𝒄 represent |𝑨𝑩|.
πŸ—πŸ + πŸ’πŸ = π’„πŸ
πŸ–πŸ + πŸπŸ” = π’„πŸ
πŸ—πŸ• = π’„πŸ
βˆšπŸ—πŸ• = 𝒄
πŸ—. πŸ– β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about πŸ—. πŸ– units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
243
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
8β€’7
3.
Let 𝒄 represent |𝑨𝑩|.
𝟐𝟐 + πŸ–πŸ = π’„πŸ
πŸ’ + πŸ”πŸ’ = π’„πŸ
πŸ”πŸ– = π’„πŸ
βˆšπŸ”πŸ– = 𝒄
πŸ–. 𝟐 β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about πŸ–. 𝟐 units.
4.
Let 𝒄 represent |𝑨𝑩|.
𝟏𝟏𝟐 + πŸ’πŸ = π’„πŸ
𝟏𝟐𝟏 + πŸπŸ” = π’„πŸ
πŸπŸ‘πŸ• = π’„πŸ
βˆšπŸπŸ‘πŸ• = 𝒄
𝟏𝟏. πŸ• β‰ˆ 𝒄
The distance between points 𝑨 and 𝑩 is about 𝟏𝟏. πŸ• units.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
244
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
Lesson 17
NYS COMMON CORE MATHEMATICS CURRICULUM
5.
8β€’7
Is the triangle formed by points 𝑨, 𝑩, π‘ͺ a right triangle?
Let 𝒄 represent |𝑨𝑩|.
πŸ‘πŸ + πŸ”πŸ = π’„πŸ
πŸ— + πŸ‘πŸ” = π’„πŸ
πŸ’πŸ“ = π’„πŸ
βˆšπŸ’πŸ“ = 𝒄
Let 𝒄 represent |𝑨π‘ͺ|.
πŸ‘πŸ + πŸ“πŸ = π’„πŸ
πŸ— + πŸπŸ“ = π’„πŸ
πŸ‘πŸ’ = π’„πŸ
βˆšπŸ‘πŸ’ = 𝒄
Let 𝒄 represent |𝑩π‘ͺ|.
πŸ‘πŸ + πŸ–πŸ = π’„πŸ
πŸ— + πŸ”πŸ’ = π’„πŸ
πŸ•πŸ‘ = π’„πŸ
βˆšπŸ•πŸ‘ = 𝒄
𝟐
𝟐
𝟐
(βˆšπŸ’πŸ“) + (βˆšπŸ‘πŸ’) = (βˆšπŸ•πŸ‘)
πŸ’πŸ“ + πŸ‘πŸ’ = πŸ•πŸ‘
πŸ•πŸ— β‰  πŸ•πŸ‘
No, the points do not form a right triangle.
Lesson 17:
Distance on the Coordinate Plane
This work is derived from Eureka Math β„’ and licensed by Great Minds. ©2015 Great Minds. eureka-math.org
This file derived from G8-M7-TE-1.3.0-10.2015
245
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.