Supplementary Materials for Structures of the 2

Supplementary Materials for
Structures of the 2-nitrophenol alkali complexes in solution and the solid
state
Hendrik Reichelt, Chester A. Faunce$ and Henrich H. Paradies*#
The University of Salford, Joule Physics Laboratory, Manchester M5 4WT, United
Kingdom
E-Mail: [email protected]
$
Deceased
# Present address: Jacobs University Bremen, Life Sciences and Chemistry Department,
Research III, Campus Ring 1, D-28759 Bremen, Germany
Table of Contents:
S-1: General Chemistry, Chemical Composition;
S-2: Small- and Wide-Angle X-Ray Scattering;
S-3: SEM Images of the 2-NP-Me+Molecular Materials;
S-4: Crystallographic Data for the 2-NP-Me+Molecular Materials;
S-5: Crystallographic Data and Refinement of o-Nitrophenol (2-Nitrophenol);
S-6: References
1
S-1: General Chemistry, Chemical Composition and Size Exclusion
Chromatography
Prior to crystallization the aqueous 2-NP-Me+ dispersions were i) dialyzed to remove
additional MeOH in the presence of 15 % (w/w) PEG (200); ii) filtered through a glass frit
at 5°C under a nitrogen atmosphere; and finally iii) crystallized as described in the
Materials and Methods section. The crystals were stored in a desiccator over P4O10 under
N2 prior to chemical analysis. The chemical compositions found were as follows: for Li+2-NP: for Li+-2-NP: C 49.31%, H 3.52%, N 9.62 %, Li 4.89% (theoretical for
C6H4NO3Li: C 49.30%, H 3.52%, N 9.60 %, Li 4.80%); Na+-2-NP found C: 44.51%, H:
3.14%, N: 8.61%, Na: 14.25% (theoretical for C6H4NO3Na: C: 44.50%, H: 3.12%, N:
8.6%, Na: 14.23%); K+-2-NP: C: 40.405%, H: 2.86%, N: 7.905%, K: 2.20% (theoretical
for C6H4NO3K: C: 40.40%, H: 3.5%, N: 7.90 %, K: 2.18%); Rb+-2-NP found: C: 32.12%,
H: 2.30%, N: 6.20%, Rb: 3.83% (theoretical for C6H4NO3Rb: C: 32.09%, H: 2.19%,
N:6.20%, Rb 3.81%); Cs+-2-NP found: C: 26.6%, H: 1.98%, N: 5.11%, Cs: 4.92%,
(theoretical for C6H4NO3Cs: C: 26.50%, H: 1.90 %, N: 5.09%, Cs: 4.89%). The accuracy
was within 0.35% for C, H, and and N absolute of the theoretical value; the precision of
samples in triplicate was within 3.2%. The alkali metals were determined by inductively
coupled plasma atomic emission spectroscopy (ICP-AES, Perkin-Elmer) and were within
0.5%.
Size-exclusion chromatography (SEC) of aqueous dispersions of 2-NP-Me+
complexes was carried out using a Waters 150 l chromate graph and a Microstyragel
Column accommodating a pore size of 1.0 t0 10 nm (45µm size, molecular weight
fraction range between 100 – 2,000 Da). The elution rate was 0.05 mL/min and at the
2
output of the column the solution was passed through a 10 µL cuvette. The eluent was
monitored at 680 nm and at 260 nm, respectively, using a Beckmann (DU 64)
spectrophotometer. No breakup of the 2-NP-Me+ clusters was observed; if a degradation
or dissociation of the clusters were to occur, the 2-NP-Me+ cluster concentration would
decrease and there would be a significant increase in the fraction of 2-NP-Me+ materials
with lower molecular weights, hence much longer elution time. This was not the case for
all 2-NP-Me+ samples.
S-2: Small- and Wide-angle X-Ray Scattering
The molecular dynamics simulations of the 2-NP-Me+complexes calculations were
carried out in Discovery Studio 4.0 (BIOVIA – A Dassault Systèmes brand – 5005
Wateridge Vista Drive, San Diego, CA 92121 USA using the FORCITE program as well
as from the GROMACS packages 1,2 obtained from the CPC Program Library, School of
Electronics, Electrical Engineering and Computer Science, The Queen's University of
Belfast BT7 1NN, Northern The simulation box comprised of 100 Me+-o-NP cations and
100 OH- anions, which was found to be sufficient for calculations at low scattering
vectors, Q. The Optimized-Potentials and force-filed parameters for liquid simulation
were those of Jorgensen et al.
3
and Price et al. 4; those from Lopez-Pádua
5
were
employed to model the system when using the GROMACS packages. The NoséHoover 6-8 thermostats were applied for temperature coupling and the Parinello-Rahman 9
for coupling at constant pressure. The system was equilibrated for approximately 4.0 ns
for each temperature. For both programs, the FORCITE and the GROMACS, the
Coulomb Lennard-Jones cutoffs were set at 20.0 Å. Furthermore, many simulations of
100 to 150 ps were tried using scaled partial charges. The system was also tried with full
atomic charges running about 10 ns when raising or lowering the temperature for
3
achieving proper equilibrium at the specified temperatures and at a pressure of one bar.
The electrostatic interactions were calculated employing the Particle-Mesh-Ewald
method 10,11 using an interpolation order of five and a Fourier grid with a spacing of 0.5
Å. The structure factor, S(Q), was calculated for temperatures of 200 K, 250 K, 298 K and
350 K using Eq. 13. The form factors in Eq. 13 were obtained from Hahn, T.; Shmueli,
U.; Wilson, A. A. J. C.; Prince, E. International Tables for Crystallography 2005, D.
Reidel Publishing Company, Dordrecht, Netherlands. Ab-initio calculations of the 2-NPMe+salts were performed using Gaussian 03, Revision C.02, 2004 12, and a basis set of
double- ς quality (G 31d1) characterized the C, N, O, Me+ and H atoms. Trial structures
were then calculated assuming the molecule to be a rigid body and employing discrete
Fourier transform (DFT) calculations. The atomic positions in the 2-NP-Me+salts were
optimized by employing the B3LYP approximation for the exchange- correlation
functional 13-15.
S-2: SAXS and crystallization of the 2-NP-Me+salts from the solution. The
individual scattering of the zero-angle peak can be analyzed in terms of an ensemble of
tiny lamellae crystallites with different habits e.g. cubes or cylinders where some of
their sites extend or protrudes into their solution. Assuming that the crystallites occupy a
fraction, α, of a single stack having a period of d, and has values between zero and
unity, the zero-angle scattering peak can be interpreted according to Vonk
16
and
Schultz 17 (Eq. 1 & 2):
I(Q) = IBragg(Q) + Ia(Q)
(1).
IBragg(Q) ∝ α2 |F1|2 δ(Q - 2πp/d)
(2).
4
Here δ(Q - 2πp/d) is the Dirac delta function and is an integer. The diffuse scattering
part of I(Q) can be expressed as (Eq. 3):
Ia(Q) ∝ (α-1)2 d |F1|2
(3).
F1 is the structure factor for one crystallite of thickness T, and can be written as (Eq. 4):
|F1|2 = (ρcrys – ρ0)2
𝑄𝑄
)
2
𝑄 2
( 𝑇)
2
𝑠𝑠𝑠2 (
(4).
It follows that the zero-angle scattering peak, Ia(Q) appears symmetric in the site
occupancy α and exhibits a maximum intensity for α = 0.5. For the crystallite growth
the magnitude of Ia(Q) should be initially controlled by their individual crystallite, and
with time it moves into the gap in the stacking (Babinet’s principle), where individual
lamellae scatter in the same manner as individual gaps. However, when crystallization
progressed IBragg(Q) increases and Ia(Q) approaches a maximum 18.
5
S-3: SEM Images of the 2-NP-Me+Molecular Materials
Figure 1 of S-3: Single crystal SEM images of the 2-NP-X+ salt complexes for a
sample concentrations of 30 mM at 5 °C; (A) 2-NP-Li+; (B) 2-NP-Na+; (C) 2-NPK+; (D) 2-NP-Rb+ and (E) 2-NP-Cs+. The scale bar is 1.0 µm. (F) Selected single
crystal images taken with a JOEL 6400 SEM: (a) 2-NP-Li+; (b) 2-NP-Na+; (c) 2-NPK+; (d) 2-NP-Rb+ and (e) 2-NP-Cs+. The scale bar is 1µm (A - F).
S-4: Crystallographic Data for the 2-NP-Me+ Salt Materials.
6
Figure 1 of S-3: Numbering scheme of the 2-NP-Me+ salt.
Table 1 of S-3: Atomic coordinates and equivalent isotropic thermal parameters for the 2NP-Me+ salts.
2-NP-Li+:
Atom
X
Y
Z
B(Eq.)
Li (1)
2.838(6)
1.382(9)
3.084
2.41(4)
O (1)
7.797(4)
-1.01(2)
5.634(9)
1.62(2)
O (2)
4.264(5)
0.567(3)
4.168(5)
1.92(1)
O (3)
-0.0361(9)
0.03475(8)
0.3343(7)
3.32(2)
N (1)
0.0407(3)
0.0259
0.2879
2.64(4)
C (1)
0.2999(2)
0.3739(9)
0.2091(4)
2.26 (4)
C (2)
0.2028(4)
0.2622(2)
0.0226(4)
2.25 (4)
C (3)
0.2969(2)
0.1572(4)
0.1760(4)
3.14 (4)
C (4)
0.4815(3)
0.3651(4)
0.1601(7)
2.34 (4)
C (5)
0.5638
0.2638
0.1176(7)
2.19 (4)
C (6)
0.4732(6)
0.1615
0.1242(5)
2.07 (4)
H (1)
0.2304
0.0764
0.1796
3.7)5)
H (2)
0.5416
0.0846
0.0088
3.0(5)
H (3)
0.7016
0.2636
0.0780
2.4(4)
H (4)
0.5596
0.4414
0.1550
2.2(4)
2-NP-Na+:
Atom
X
Y
Z
B(Eq.)
Na (1)
1.1827(9)
0.7165
0.95648(6)
2.71(4)
O (1)
0.983(1)
1.1937
0.8928(8)
1.62(2)
O (2)
0.401(1)
1.729(9)
0.8242(8)
1.92(1)
O (3)
0.662(2)
1.712(1)
0.938(1)
3.32(2)
N (1)
0.582(2)
1.597(7)
0.847(1)
2.64(4)
C (1)
0.896(2)
1.301(7)
0.7958(6)
2.33(4)
C (2)
0.697(2)
1.437(6)
0.07754(8)
2.34 (4)
C (3)
0.605(1)
1.444(6)
0.675(1)
3.32(5)
C (4)
0.711(2)
1.315(7)
0.5945(7)
2.54(4)
7
C (5)
0.909(2)
1.179(7)
0.614987)
2.04(5)
C (6)
1.002(1)
1.172(7)
0.715588)
1.94(4)
H (1)
0.4692
1.5362
0.6609
3.9
H (2)
0.6475
1.3197
0.5260
3.0
H (3)
0.9815
1.0916
0.5602
2.4
H (4)
1.1373
1.0800
0.7294
2.3
2-NP-K+:
Atom
X
Y
Z
B(Eq.)
K (1)
-0.1238(5)
-0.799(9)
9.157
2.95(2)
O (1)
0.617(4)
0.592(7)
0.592
9.632(2)
O (2)
2.107(7)
1.172(3)
5.842(2)
1.91(5)
O (3)
0.44(8)
0.224(6)
6.806(2)
2.96(4)
N (1)
1.616(9)
0.639(7)
6.859
2.64(4)
C (1)
1.771(1))
-0.149(5)
9.184(5)
2.33(4)
C (2)
2.319(1)
0.506(5)
7.954(4)
2.34 (4)
C (3)
3.727(6)
0.967(8)
8.014(4)
3.32(5)
C (4)
2.619(3)
-0.351
10.266(4)
2.54(4)
C (5)
3.946(4)
00.08(1)
10.247(2)
2.04(5)
C (6)
4.488(6)
0.734(4)
9.148
1.94(4)
H (1)
4.182(7)
1.477(1)
7.177
3.9
H (2)
5.519(1)
1.063(4)
9.175
3.0
H (3)
4.572
-0.105(8)
11.10(8)
2.4
H (4)
2.26(9)
-0.872(8)
11.14(3)
2.3
Atom
X
Y
Z
B(Eq.)
Rb (1)
5.976(5)
-0.334(4)
14.167(1)
3.05(4)
O (1)
5.144(5)
1.053(7)
12.081(9)
1.63(2)
O (2)
2.496(8)
-0.239(7)
9.221
1.95(1)
O (3)
3.078(5)
-0.691
11.227(4)
3.35(2)
N (1)
3.359(7)
-0.205(7)
110.112(3)
2.74(4)
C (1)
5.595(7)
0.319
10.983
2.36(4)
C (2)
4.539(3)
0.315(3)
9.89(7)
2.34 (4)
2-NP-Rb+:
8
C (3)
4.88(9)
0.882(8)
8.564(3)
3.36(5)
C (4)
6.874
0.81(9)
10.579
2.57(4)
C (5)
7.133(1)
1.324
9.308(6)
2.14(5)
C (6)
6.156(7)
1.365
8.322(4)
1.98(4)
H (1)
4.146
0.926
7.771
3.9
H (2)
6.395(7)
1.775(6)
7.352
3.7
H (3)
8.121(2)
1.698(2)
9.081
2.2
H (4)
7.683(8)
0.787(9)
11.298(6)
2.3
Atom
X
Y
Z
B(Eq.)
Cs (1)
2.328
2.932(5)
7.353
3.51(2)
O (1)
5.604
1.804(1)
6.767
1.65(2)
O (2)
3.343
5.155
6.167
1.90(1)
O (3)
5.383
4.645
6.604
3.45(2)
N (1)
4.168
4.363
6.668
2.54(4)
C (1)
4.788
2.271
7.798
2.46(4)
C (2)
3.771
3.256
7.243
2.37 (4)
C (3)
2.328
2.932
7.353
3.30(5)
C (4)
4.224
1.153
8.483
2.55(4)
C (5)
2.854
0.889
8.528
2.14(5)
C (6)
1.925
1.759
7.972
1.96(4)
H (1)
1.574
3.593
6.944
4.0(1)
H (2)
0.872
1.526
8.036
3.0
H (3)
2.504
0.002(4)
9.04(3)
2.5
H (4)
4.895
0.471(9)
9.04(2)
2.1
2-NP-Cs+:
𝟖
Beq = π2 (U11 (aa*)2 + U22 (bb*)2 + U33 (cc*)2 + 2U12 aa*bb* cosγ + 2U13 aa*cc* cosβ + 2U23 bb* cc* cos α).
𝟑
Table 2 of S-4: Anisotropic displacement parameters for the 2-NP-Me+ salts.
2-NP-Li+:
Atom
U11
U22
U33
U12
U13
U23
Li
0.025(3)
0.040(7)
0.038(4)
-0.008(9)
0.003
-0.03(1)
O (1)
0.020839
0.063(9)
0.0171
-0.058
0.011
-0.073
O (2)
0.024(3)
0.0240(7)
0.059(1)
9
-0.0102(6)
0.0139(7)
-0.0019(6)
O (3)
0.041(4)
0.0257(8)
0.042(1)
0.0044(4)
0.002
-0.013
N (1)
0.032(5
0.0175(7)
0.030(7)
0.0023
-0.01
0.008
C (1)
0.032(5)
0.0425
0.035(6)
0.057
0.007
-0.003
C (2)
0.029(5)
0.0191(7)
0.096(3)
-0.003
-0.03
0.0046
C (3)
0.041(7)
0.043
0.081(5)
0.020
-0.03
-0.0246
C (4)
0.032(5)
0.0456
0.048(6)
0.0316
-0.01
-0.0175
C (5)
0.026(5)
0.033
0.051(6)
0.004
0.006
-0.0064
C (6)
0.024(5)
0.0224
0.0425
0.008(4)
-0.04
0.0014
H (1)
0.0498
H (2)
0.0385
H (3)
0.0307
H (4)
0.0292
2-NP-Na+:
Atom
U11
U22
U33
U12
U13
U23
Na
0.028(3)
0.040(7)
0.038(4)
-0.007(9)
0.005
-0.02(1)
O (1)
0.0209(9)
0.0685
0.169(6)
0.0547
-0.11
-0.073(8)
O (2)
0.025(3)
0.023(7)
0.044(7)
0.0240(7)
-0.007
-0.013
O (3)
0.041(4)
0.0257(8)
0.075(5)
0.091
-0.002
-0.014(4)
N (1)
0.032(5)
0.0183(7)
0.038(5)
0.002(3)
-0.010(7)
0.008(3)
C (1)
0.032(5)
0.028(5)
0.047(5)
0.012(4)
-0.012(5)
-0.011(4)
C (2)
0.029(5)
0.022(4)
0.043(5)
0.011(4)
-0.007(4)
0.000(4)
C (3)
0.041(7)
0.0717
0.0536
0.0086
-0.0015
-0.0275
C (4)
0.032(5)
0.062(6)
0.047(6)
0.013(6)
-0.007(4)
0.000(4)
C (5)
0.026(5)
0.039(5)
0.027(5)
-0.006(5)
-0.001(5)
-0.027(5)
C (6)
0.024(5)
0.053(6)
0.029(5)
-0.008(5)
-0.011(5)
-0.035(5)
H (1)
0.0498
H (2)
0.0385
H (3)
0.0307
H (4)
0.0292
2-NP-K+:
Atom
U11
U22
U33
U12
U13
U23
K
0.025(3)
0.040(7)
0.038(4)
-0.008(9)
0.003
-0.03(1)
O (1)
0.020839
0.0685
0.169(6)
0.054(7)
-0.11
-0.0738
10
O (2)
0.024(3)
0.023(7)
0.044(7)
0.0240(7)
-0.007
-0.013
O (3)
0.041(4)
0.0257(8)
0.075(5)
0.091
-0.002
-0.014(4)
N (1)
0.032(5
0.0183(7)
0.038(5)
0.002(3)
-0.010(7)
0.008(3)
C (1)
0.032(5)
0.032(7)
0.0568
0.006(7)
-0.003(4)
0.010(5)
C (2)
0.029(5)
0.031(8)
0.0956
-0.006(7)
-0.032(6)
0.004(6)
C (3)
0.041(7)
0.040(7)
0.0813
0.022(3)
-0.022(7)
-0.021(9)
C (4)
0.032(5)
0.057(8)
0.0438
0.031(9)
-0.007(8)
-0.145
C (5)
0.026(5)
0.034(5)
0.0503
0.007(6)
0.005(4)
-0.005(4)
C (6)
0.024(5)
0.020(8)
0.0407
0.006(9)
-0.003(4)
0.001(8)
H (1)
0.0498
H (2)
0.0385
H (3)
0.0307
H (4)
0.0292
2-NP-Rb+:
Atom
U11
U22
U33
U12
U13
U23
Rb
0.025(3)
0.040(7)
0.038(4)
-0.008(9)
0.003(3)
-0.03(1)
O (1)
0.020839
0.070(3)
0.172(8)
-0.002(6)
-0.116(5)
0.073(5)
O (2)
0.024(3)
0.043(5)
0.047(8)
0.065(7)
-0.006(3)
0.013(3)
O (3)
0.041(4)
0.0257(8)
0.099(8)
-0.002(8)
-0.015(4)
0.034(5)
N (1)
0.032(5
0.0183(7)
0.035(6)
0.003(4)
-0.010(4)
0.007(8)
C (1)
0.032(5)
0.038(7)
0.056(7)
0.007(5)
-0.004(5)
0.0011(4)
C (2)
0.029(5)
0.034(6)
0.089(7)
-0.003(5)
-0.032(4)
0.003(5)
C (3)
0.041(7)
0.045(7)
0.082(7)
0.030(7)
-0.031(7)
-0.002(5)
C (4)
0.032(5)
0.054(7)
0.048(7)
0.031(6)
-0.007(8)
-0.017(5)
C (5)
0.026(5)
0.036(8)
0.054(3)
0.006(9)
0.006(4)
-0.006(5)
C (6)
0.024(5)
0.024(5)
0.042(8)
0.007(8)
-0.004(5)
0.002(3)
H (1)
0.0498
H (2)
0.0385
H (3)
0.0307
H (4)
0.0292
2-NP-Cs+:
Atom
U11
U22
U33
U12
U13
U23
Cs
0.125(3)
0.080(7)
0.078(4)
0.003(9)
0.01(3)
-0.0126(1)
11
O (1)
0.070((3)
0.095(4)
0.086(4)
-0.011(3)
-0.01(3)
0.0253
O (2)
0.145(3)
0.071(9)
0.07(1)
-0.027(4)
0.04(1)
-0.017(9)
O (3)
0.141(4)
0.1257(8)
0.171(7)
-0.002(5)
0.004(5)
-0.065(5)
N (1)
0.062(5)
0.066(8)
0.064(4)
0.001(4)
-0.007(3)
0.000(3)
C (1)
0.092(5)
0.060(5)
0.083(6)
-0.006(5)
0.015(5)
0.001(5)
C (2)
0.019(5)
0.097(5)
0.102(8)
-0.034(8)
0.006(7)
0.001(7)
C (3)
0.141(7)
0.087(9)
0.16(1)
-0.028(9)
-0.053(9)
0.039(1)
C (4)
0.092(5)
0.052(7)
0.22(2)
0.000(6)
-0.011(9)
0.0014(9)
C (5)
0.076(5)
0.081(7)
0.161(4)
-0.003(6)
0.006(6)
-0.030(7)
C (6)
0.064(5)
0.055(5)
0.087(6)
-0.002(4)
-0.017(5)
-0.004(5)
H (1)
0.0498
H (2)
0.0385
H (3)
0.0307
H (4)
0.0292
The general expression for the temperature factor was: exp (-2π2 [a*2U11h2 + b*2U22k2 + c*2U33l2
+ 2a*b*U12hl + 2b*c*U23kl]).
Rigid-body thermal parameters were employed
19
in order to
improve the accuracy of the positional parameters. The values for the 2-NP-Na+ salt and
the 2-NP-Cs+ salt are listed in Table 4. The parameters for the 2-NP-Rb+ and the 2-NP-K+
salts were very similar to those of the 2-NP-Na+ salt and the 2-NP-Li+ salt was similar to
that of the 2-NP-Cs+ salt.
Table 4 of S-4: Molecular Vibrational tensors for the Na+- 2-NP and the Cs+-2-NP-salt
Translation T (x 103) in Å3
Na: 42(2)
Libration L in degrees2
4(3)
2(1)
26(2)
0(2)
55(6)
-10(7)
-10(3)
30(7)
-4(-7)
34(4)
Cs: 34(5)
6(2)
(2)
18(4)
2(4)
26(4)
65(3)
36(7)
-24(5)
3(5)
24(4)
-12(-17)
3284)
12
Direction (cosines x 10-3)
R.M.S Amplitude
0.215 (Na); (0.348, Cs)
815 (Na); (765, Cs)
-150 (Na); (-127, Cs)
-300 (Na); (200, Cs)
0.190 (Na); (0.42, Cs)
230 (Na); (203, Cs)
485( Na), (402, Cs)
620 (Na); (340, Cs)
0.252 (Na), (0.321, Cs)
70( Na); (0.432, Cs)
695 (Na); (560, Cs)
-790 (Na); (110, Cs)
4.07 (Na), (4.76, Cs)
900 (Na); (5.02, Cs)
175 (Na); (125, Cs)
-620 (Na); (-140, Cs)
6.05 (Na); (6.97, Cs)
500 (Na); (430, Cs)
12 (Na; (17, Cs )
700 (Na); (354, Cs)
7.00 Na), (7.56, Cs)
-150 (Na) -132, Cs)
970(Na), (865, Cs)
71 (Na); (123, Cs)
R.m.s: ∆ (Uij) = 0.0065 Å2 (Na) and 0.0087 Å2 (Cs), respectively
Table 5 of S-4: Intramolecular distances (Å) of the 2-nitrophenol-structure of the
Me+-Salts involving the non-hydrogen atoms
Atom
Atom
Distance
Atom
Atom
Distance
O (1)
C (1)
1.403 (1)
C (1)
C (6)
1.405(3)
O (2)
N (1)
1.294 (3)
C (2)
C (3)
1.399(6)
O (3)
N (1)
1.313 (2)
C (3)
C (4)
1. 409(9)
N (1)
C (2)
1.393(2)
C (4)
C (5)
1.403(3)
C (1)
C (2)
1.401(2)
C (5)
C (6)
1.398(1)
Estimated standard deviations in the least significant figure are given in parentheses.
Table 6 of S-4: Intramolecular Bond Angles involving the non-hydrogen atoms
Atom
Atom
Atom
Angle
Atom
Atom
Atom
Angle
O (2)
N (1)
O (3)
112.5(2)
N (1)
C (2)
C (3)
115.1(1)
O (2)
N (1)
C (2)
123.2(1)
C (1)
C (2)
C (3)
120.0 (1)
O (3)
N (1)
C (2)
124.0(1)
C (2)
C (3)
C (4)
120.0 (1)
O (1)
C (1)
C (2)
125.0(1)
C (3)
C (4)
C (5)
120.0 (1)
O (1)
C (1)
C (1)
113.1(1)
C (4)
C (5)
C (6)
120.0 (1)
C (2)
C (1)
C (6)
120.0(9)
C (1)
C (6)
C (5)
120 (1)
N (1)
C (2)
C (19
124.9(1)
13
Estimated standard deviations in the least significant figure are given in parentheses.
Angles are in degrees.
Table 7 of S-4: Selected Torsion or Conformational Angles (in degrees) of the 2nitrophenol-Me+-Salts.
(1)
(2)
(3)
(4)
Angle
O (1)
C (1)
C (2)
N (1)
23.1 (4)
O (1)
C (1)
C (2)
C (3)
-163.0(2)
O (1)
C (1)
C (6)
C (5)
164.0 (2)
O (2)
N (1)
C (2)
C (1)
178.3(3)
O (2)
N (1)
C (2)
C (3)
3.03(4)
O (3)
N (1)
C (2)
C (1)
14.4(4)
O (3)
N (1)
C (2)
C (3)
-162.2(3)
N (1)
C (2)
C (1)
C (6)
-175.3(2)
N (1)
C (2)
C (3)
C (4)
175.1(2)
C (1)
C (2)
C (3)
C (4)
0(5)
C (1)
C (6)
C (5)
C (4)
0(3)
C (2)
C (1)
C (6)
C (5)
0(1)
C (2)
C (3)
C (4)
C (5)
0(6)
C (3)
C (2)
C (1)
C (6)
0(1)
C (3)
C (4)
C (5)
C (6)
0(3)
The sign is positive if when looking from atom 2 to atom 3 a clockwise motion of atom 1
would superimpose it on atom 4.
Figure 2 of S-4: A convenient numbering scheme for the superstructures of 2-NP-Li+ (A),
2-NP-Na+, K+- and 2-NP-Rb+ (B) and (C) for 2-NP-Cs+.
14
Figure 3 of S-4: (A) Trigonal prismatic arrangement of the 2-NP ligands around the
central Li+ (D3h); (B) The Na+ coordination sphere showing six-coordinate geometry,
where the sodium ion is coordinated by six bonds, arranged at the vertices of an
octahedral assembly (D2h). (C) Super-molecular structure of the 2-NP-K+ where the
ligands are arranged around the K+ ion, forming a trigonal prism (D3h), (D) 2-NP-Cs+
structure with a coordination number of eight where the Cs+ ion shows a square
antiprismatic arrangement (D4d).
Table 7 of S-4: Selected Intermolecular Distances (Å) with Contacts out to 3.60 Å.
A.-2-NP-Li+:
Atom
Atom
Distance
Atom
Atom
Distance
Li (11)
O (11)
2.840(5)
C (24)
N (29)
2.451(7)
Li (11)
O (46)
2.9416
Li (11)
Li (11)
2.935
Li (11)
O (46)
2.942(8)
Li (11)
Li (11’)
2.936
Li (11)
O (10)
2.9096)
Li (11)
N (8)
2.987(6)
Li (11)
O (18)
2.8963)
C (2)
O (7)
2.449(7)
Li (11)
O (20)
2.8694)
O (46)
C (47)
2.401(2)
Li (11)
O (28)
2.831(8)
O (46)
C (42)
2.401(2)
O (31)
N (29)
2.249(1)
C (42)
C (41)
2.40(0)
N (8)
O (9)
2.24719
C (1)
C (2)
3.399(9)
N (8)
O (10)
2.3609)
C (1)
C (6)
3.394(9)
C (14)
N (19)
2.439
C (2)
C (3)
3.41582)
N (19)
O (20)
2.355(8)
C (3)
C (4)
3.406(9)
15
N (19)
O (21)
2.247(4)
C (4)
C (5)
3.392(5)
O (30)
N (29)
2.357(4)
C (5)
C (6)
3.392(5)
Symmetry code: (1) x,y,z; -x, -y, -z; (2) -x, ½ +y, ½ -z; (3) x, ½ -y, ½ +z
B. – 2-NP-Na+:
Atom
Atom
Distance
Atom
Atom
Distance
Na (11)
O (54)
2.298(7)
Na (11)
O (3)
3.16(5)
Na (11)
O (28)
2.341(1)
Na (11)
N (1)
3.19(7)
Na (11)
O (10)
2.310(2)
Na (11)
Na (11)
3.313(5)
Na (11)
O (53)
2.429(7)
Na (11)
Na (11)
3.315(3)
Na (11)
O (43)
2.440(3)
Na (11)
O (43)
3.40(1)
Na (11)
O (18)
2.491(3)
Na (11)
C (1)
3.44(2)
Na (11)
N(8)
3.13 (2)
O (1)
O (3)
2.872(3)
O (10)
O (28)
3.342(5)
O (3)
O (3)
3.332(1)
O (52)
O (53)
3.342(5)
O (3)
O (3)
3.334(1)
O (28)
O (20)
3.410(8)
O (44)
C (39)
3.412
O (1)
N(8)
3.434(7)
O (54)
C (49)
3.453
O (1)
C (1)
3.552(3)
O (53)
N (51)
3.514(2)
O (1)
O (2)
3.553(7)
N (8)
C (2)
3.343(2)
O (2)
C (6)
3.285(1)
N (8)
C (24)
3.413(4)
O (20)
C (2)
3.355(7)
C (1)
C (2)
3.443(7)
O (21)
N (19)
3.424(5)
C (1)
C (6)
3.473(4)
O (2)
C (6)
3.513(2)
C (15)
C (16)
3.473
C (3)
C (5)
3.502(3)
C (16)
C (17)
3.443(2)
Atom
Atom
Distance
Atom
Atom
Distance
K (11)
O (10)
3.393(6)
K (11)
O (3)
3.256
K (11)
O (28)
3.425(9)
K (11)
N (1)
3.256
K (11)
O (52)
3.404(5)
K (11)
K (11)
3.456
K (11)
O (66)
3.353(1)
K (11)
K (11)
3.461
K (11)
O (67)
3.377(7)
K (11)
O (43)
3.342
K (11)
O (18)
3.416(2)
K (11)
C (1)
3.49
C. - 2-NP-K+:
16
K (11)
N(8)
3.173
O (1)
O (3)
2.872(3)
O (10)
O (28)
3.342(5)
O (3)
O (3)
3.332(1)
O (52)
O (53)
3.342(5)
O (3)
O (3)
3.334(1)
O (28)
O (20)
3.410(8)
O (44)
C (39)
3.412
O (1)
N(8)
3.434(7)
O (54)
C (49)
3.453
O (1)
C (1)
3.552(3)
O (53)
N (51)
3.514(2)
O (1)
O (2)
3.553(7)
N (8)
C (2)
3.343(2)
O (2)
C (6)
3.285(1)
N (8)
C (24)
3.413(4)
O (20)
C (2)
3.355(7)
C (1)
C (2)
3.443(7)
O (21)
N (19)
3.424(5)
C (13)
C (14)
3.413(4)
O (2)
C (6)
3.513(2)
C (14)
C (15)
3.407
C (3)
C (5)
3.502(3)
C (44)
C (149)
3.403(2)
Atom
Atom
Distance
Atom
Atom
Distance
Rb (11)
O (10)
3.660(5)
Rb (11)
O (3)
3.345
Rb (11)
O (28)
3.668(7)
Rb (11)
N (1)
3.245
Rb (11)
O (28)
3.701(4)
Rb (11)
Rb (11)
3.652
Rb (11)
O (53)
3.657
Rb (11)
Rb (11)
3.652
Rb (11)
O (43)
3.647(7)
Rb (11)
O (43)
3.764(1)
Rb (11)
O (58)
3.6425
Rb (11)
C (1)
3.43(4)
Rb (11)
N(8)
3.2015
O (1)
O (3)
2.872(3)
O (10)
O (28)
3.342(5)
O (3)
O (3)
3.332(1)
O (52)
O (53)
3.342(5)
O (3)
O (3)
3.334(1)
O (28)
O (20)
3.410(8)
O (44)
C (39)
3.412
O (1)
N(8)
3.434(7)
O (54)
C (49)
3.453
O (1)
C (1)
3.552(3)
O (53)
N (51)
3.514(2)
O (1)
O (2)
3.553(7)
N (8)
C (2)
3.343(2)
O (2)
C (6)
3.285(1)
N (8)
C (24)
3.413(4)
O (20)
C (2)
3.355(7)
C (1)
C (2)
3.443(7)
O (21)
N (19)
3.424(5)
C (1)
C (6)
3.473(4)
O (2)
C (6)
3.513(2)
C (15)
C (16)
3.473
C (3)
C (5)
3.502(3)
C (16)
C (17)
3.443(2)
D. - 2-NP-Rb+:
Symmetry code: (1) x, y, z; (2) –x. ½ +y, -z;
17
E. - 2-NP-Cs+:
Atom
Atom
Distance
Atom
Atom
Distance
Cs (11)
O (10)
4.02(3)
Cs (11)
O (10)
2.947(6)
Cs (11)
O (18)
3.14(1)
Cs (11)
Cs (11)
3.69(2)
Cs (11)
O (28)
3.314(1)
N (29)
O (30)
3.912(3)
Cs (11)
O (43)
3.14(8)
Cs (11)
Cs (11)
3.70(1)
Cs (11)
O (54)
3.41(3)
Cs (11)
Cs (11)
7.34(2)
Cs (11)
O (55)
3.908
C (14)
C (15)
3.163
Cs (11)
O (63)
3.865
C (15)
C (16)
3.685
C (1)
C (2)
3.54(8)
C (16)
C (17)
4.022
C (2)
C (3)
3.984
C (17)
C (12)
3.142
C (3)
C (4)
3.201
C (13)
O (18)
3.138
C (4)
C (5)
3.529
C (22)
C (23)
3.72(1)
C (5)
C (6)
3.9768
C (23)
C (24)
3.161
C (6)
C (1)
3.183
C (24)
C (25)
4.010
C (2)
O (7)
3.074
C (25)
C (26)
3.680
C (3)
N (8)
3.681
C (26)
C (27)
3.113
N (8)
O (9)
3.84(5)
C (27)
C (22)
3.954
N (8)
O (10)
3.169(8)
C (23)
O (28)
3.9651
C (12)
C (13)
3.677
C (24)
N (29)
3.813
C (13)
C (14)
4.08(8)
N (29)
O (31)
2.9547
Symmetry code: (1) x, y, z; (2) –x, -y, z + ½; (3) x + ½, -y, z; (4) –x + ½, y, z + ½.
Estimated standard deviations in the least significant figure are given in parentheses.
Table 8 of S-4: Intermolecular Hydrogen-Bonding
Donor Atom
Acceptor Atom
Distance (Å)
Angle XDA (°)
Angle DAY (°)
O (7)
O (28)
3.180
60.74
49.5
O (7)
O (43)
2.625
125.5
58.0
O (7)
O (66)
2.217
147.4
67.1
O (44)
O (66)
3.037
134.2
103.8
O (44)
O (63)
2.944
71.8
57.5
18
O (20)
O (42)
2.809
59.1
158.9
O (20)
O (54)
2.294
107.1
95.9
O (20)
O (55)
2.552
96.1
96.3
S-5: Crystallographic Data for 2-nitrophenol:
Figure 1 of S-4: Numbering scheme of 2-nitrophenol
Summary
The 2-nitrophenol molecule was planar. The largest deviation from the phenyl ring plane
was 0.07 Å (0.003 Å) for the O (3), one of the nitro-group oxygens. The hydroxyl group of
the 2-NP (H 1) forms an intramolecular hydrogen bond to one of the oxygen atoms (O (2)) of
the nitro group (2.385 Å), the O (1) ▪▪▪ O (21) distance was 2.589 Å (2.602 Å), the H▪▪▪ O
(21) distance was 1.71(3) Å (1.91 Å) and the O (21) – H ▪▪▪ O hydrogen bond angle was
148(1)°(143°). There were no significant intermolecular contacts. The distance between the
hydrogen (H 1) and the phenolic oxygen (O 2) was 0.967(9) Å, close to the one determined by
Borisenko et al 20 from electron-diffraction studies and ab initio molecular orbital calculations
of 0.969 Å. The figures marked in red represent correspond to the crystal structure of 2-NP
reported by Iwasaki & Kawano 21 assuming a space group of P21/a. We were able to confirm
this structure when the crystals were obtained from cyclohexane-benzene solutions (45% v/v,
55% v/v) at 25 °C. These crystals exhibit yellow pillars whereas the 2-NP crystals obtained
from vaporization show a prismatic habit and were light yellow in color. The differences in
19
habit and color are probably a result of polymorphism 22. Polymorphs reveal different physical
and sometimes chemical properties, depending on the material, and on the nature and
composition of the solvent and temperature, which are all related to crystal growth
23
.
Furthermore, the 2-NP crystals that formed as yellow pillars, obtained from a cyclohexanebenzene solution, at ambient temperatures, with similar unit cell dimensions were reported
previously by Iwasaki & Kawano
21
. Whereas, the 2-NP crystals obtained from vaporization
show a prismatic habit and were light yellow in color. The differences in habit and color are
probably a result of polymorphism. Polymorphs reveal different physical and sometimes
chemical properties, depending on the material the nature and composition of the solvent and
temperature, which are all related to crystal growth.
Experimental Details
Empirical Formula
C6H5NO3
Formula Weight
139.11
Crystal Color, Habit
yellow, prism
Crystal Dimensions (mm)
0.400 x 0.200 x 0.200
Crystal System
monoclinic
No. Reflections Used for Unit
Cell Determination (2θ range)
Omega Scan Peak Width
at Half-height
Lattice Parameters (Å)
25 (79.0 – 80.0°)
0.30
In degrees (°)
A3
a=
b=
c=
β=
V=
Space Group
P21/c (#14);
Z value
4
Dcalc g/cm3
1.547, 1.495
F000
288
µ(CuKα)
10.40 cm-1
Diffractometer
Rigaku AFC5R
Radiation
CuKα (λ = 1.54178 Å)
Temperature
-120°C
Attenuators
Zr foil
(factors: 3.6, 12.2, 44.0)
20
6.3688 (6) 6.876
14.3424 (6) 14.389
6.7254 (6) 6.439
103.497 (8), 103.79
597.36 (9), 614.10
P21/a (#14)
Take-off Angle
6.0°
Scan Type
Ω-2θ
Scan Rate
32.0°/min (in omega)
(2 rescans)
Scan Width
(1.31 + 0.30 tanθ)°
2θmax
120.2°
No. of Reflections Measured
Corrections
Total: 1029
Unique: 941 (Rint = .066)
Lorentz-polarization
Absorption
(trans. factors: 0.75 – 1.43)
Structure Solution
Direct Methods
Hydrogen Atom Treatment
Refined
Refinement
Full-matrix least-squares
Function Minimized
∑w (│Fo│-│Fc│)2
Least-squares Weights
4Fo2/σ2(F02)
p-factor
0.03
Anomalous Dispersion
All non-hydrogen atoms
No. Observation (I>3.00σ(I))
838
No. Variables
111
Reflection/Parameter Ratio
7.55
Residuals: R; Rw
0.041; 0.058
Goodness of Fit Indicator
2.97
Max Shift/Error in Final Cycle
0.09
Maximum Peak in Final Diff. Map
0.20 e-/ Å3
Minimum Peak in Final Diff. Map
-0.26 e-/ Å3
Table 1 of S 5: Position Parameters and Beq for 2-nitrophenol
Atom
x
y
z
B(eq)
O(1)
0.8831(2)
0.1752(1)
0.0516(2)
3.33(6)
O(2)
1.1756(2)
0.04658(9)
0.1363(2)
3.55(6)
O(3)
1.5120(2)
0.0819(1)
0.2382(2)
3.69(6)
N(1)
1.3237(2)
0.1045(1)
0.1800(2)
2.55(6)
C(1)
1.0548(3)
0.2319(1)
0.1008(2)
2.38(7)
21
C(2)
1.2692(3)
0.2029(1)
0.1626(2)
2.26(7)
C(3)
1.4388(3)
0.2660(1)
0.2108(2)
2.32(7)
C(4)
1.3963(3)
0.3599(1)
0.2010(3)
2.68(7)
C(5)
1.1832(3)
0.3901(1)
0.1414(3)
2.97(8)
C(6)
1.0167(3)
0.3280(1)
0.0937(3)
2.81(7)
H(1)
0.947(5)
0.114(2)
0.085(4)
6.5(7)
H(3)
1.582(3)
0.241(1)
0.249(2)
1.5(3)
H(4)
1.512(3)
0.403(1)
0.238(3)
2.3(4)
H(5)
1.149(3)
0.456(2)
0.134(3)
3.1(4)
H(6)
0.871(3)
0.344(1)
0.058(3)
2.9(4)
Table 2 of S-5: Anisotropic displacement parameters for the 2-nitrophenol
Atom
U11
U22
U33
U12
U13
U23
O(1)
0.0341(8)
0.0411(9)
0.0531(9)
-0.0055(6)
0.0136(6)
0.0016(6)
O(2)
0.0520(9)
0.0240(7)
0.059(1)
-0.0102(6)
0.0139(7)
-0.0019(6)
O(3)
0.0408(8)
0.0257(8)
0.075(1)
0.0070(6)
0.0156(7)
0.0049(6)
N(1)
0.040(1)
0.0183(7)
0.0419(9)
-0.0025(9)
0.0168(7)
-0.0004(5)
C(1)
0.033(1)
0.032(1)
0.029(1)
-0.0013(7)
0.0129(7)
0.0017(7)
C(2)
0.038(1)
0.0201(9)
0.033(1)
0.0012(7)
0.0168(7)
0.0008(7)
C(3)
0.033(1)
0.025(1)
0.033(1)
-0.0004(7)
0.0123(7)
-0.0003(7)
C(4)
0.046(1)
0.020(1)
0.039(1)
-0.0045(8)
0.0164(8)
-0.0014(7)
C(5)
0.055(1)
0.022(1)
0.040(1)
0.0069(8)
0.0200(9)
0.0016(7)
C(6)
0.039(1)
0.036(1)
0.035(1)
0.0090(8)
0.0138(8)
0.0024(7)
H(1)
0.083(9)
H(3)
0.019(4)
H(4)
0.030(5)
H(5)
0.040(5)
H(6)
0.037(5)
Table 3 of S-5: Intramolecular Distances
Atom
Atom
Distance
Atom
22
Atom
Distance
O(1)
C(1)
1.341(2)
C(3)
C(4)
1.373(3)
O(1)
H(1)
0.97(3)
C(3)
H(3)
0.96(2)
O(2)
N(1)
1.240(2)
C(4)
C(5)
1.392(3)
O(3)
N(1)
1.215(2)
C(4)
H(4)
0.95(2)
N(1)
C(2)
1.452(2)
C(5)
C(6)
1.365(3)
C(1)
C(2)
1.395(3)
C(5)
H(5)
0.97(2)
C(1)
C(6)
1.397(3)
C(6)
H(6)
0.93(2)
C(2)
C(3)
1.388(3)
Table 4 of S-5: Least-Squares Planes:
Plane number 1
Atoms Defining Plane
Distance (Å)
esd
C (1)
C (2)
C (3)
C (4)
C(5)
C (6)
0.0062
-0.0060
0.0020
0.0001
0.0004
-0.0042
0.0016
0.0016
0.0015
0.0017
0.0017
0.0017
Table 5 of S-5: Intramolecular bond angles
Atom
Atom
Atom
Angle
Atom
Atom
Atom
Angle
C (1)
O (2)
O (2)
O (3)
O (1)
O (1)
C (2)
N (1)
N (1)
C (1)
C (2)
O (1)
N (1)
N (1)
N (1)
C (1)
C (1)
C (1)
C (2)
C (2)
C (2)
C (3)
H (1)
O (3)
C (2)
C (2)
C (2)
C (6)
C 86)
C (1)
C (3)
C (3)
C (4)
103(2)
122.5(1)
118.5(1)
119.0(1)
125.2(2)
117.7(2)
117.1(2)
120.9(2)
117.2(2)
121.9(2)
119.6(29
C (2)
C (4)
C (3)
C (3)
C (5)
C (4)
C (4)
C (6)
C (1)
C (1)
C (5)
C (3)
C (3)
C (4)
C (4)
C (4)
C (5)
C (5)
C (5)
C (6)
C (6)
C (6)
H (3)
H (3)
C (5)
H (4)
H (4)
C (6)
H (5)
H (5)
C (5)
H (6)
H (6)
117(1)
123(1)
119.2(2)
120(1)
121(1)
121.1(2)
121(1)
118(1)
121.1(2)
114(1)
125(1)
Angles are in degrees. Estimated standard deviations in the least significant figure are shown
in parenthesis.
23
Table 6 of S-5: Torsion or conformational angles
(1)
(2)
(3)
(4)
angle
(1)
(2)
(3)
(4)
angle
O (1)
O (1)
O (1)
O (1)
O (2)
O (3)
O (3)
O (3)
N (1)
N (1)
N (1)
C (1)
C (1)
C (1)
C (1)
C (1)
C (1)
C (1)
C (1)
N (1)
N (1)
N (1)
N (1)
C (2)
C (2)
C (2)
C (2)
C (2)
C (6)
C (6)
C (2)
C (2)
C (6)
C (6)
C (2)
C (2)
C (2)
C (2)
C (1)
C (3)
C (3)
C (3)
C (3)
C (5)
C (5)
N (1)
C (3)
C (5)
H (6)
C (1)
C (3)
C (1)
C (3)
C (6)
C (4)
H (3)
C (4)
H (3)
C (4)
H (5)
-0.43
179.9(3)
180.9(3)
2(1)
0.9(2)
-179.4(2)
-178.5(2)
1.2(2)
178.3(1)
-178.7(1)
1(1)
1.1(2)
-179(1)1
-0.7(3)
180(1)
C (2)
C (2)
C (2)
C (2)
C (2)
C (3)
C (3)
C (3)
C (4)
C (5)
C (6)
C (6)
H (3)
H (4)
H (5)
C (1)
C (1)
C (1)
C (3)
C (3)
C (2)
C (4)
C (4)
C (5)
C (4)
C (1)
C (5)
C (3)
C (4)
C (5)
O (1)
C (6)
C (6)
C (4)
C (3)
C (1)
C (5)
C (5)
C (6)
C (3)
O (1)
C (4)
C (4)
C (5)
C (6)
H (1)
C (5)
H (6)
C (5)
H (4)
C (6)
C (6)
H (5)
H (6)
H (3)
H (1)
H (4)
H (4)
H (5)
H (6)
6(2)
1.3(3)
-177(1)
-0.5(3)
178(1)
-1.4(2)
0.3(3)
180(1)
177(1)
179(1)
-173(2)
-178(1)
-2(2)
1(2)
-2(2)
The sign is positive if when looking from atom 2 to atom 3 a clockwise action of atom 1
would superimpose it on atom 4.
Table 7 of S-5: Intermolecular Distances
Atom Atom
Distance
Atom Atom
Distance
O(1)
H(3)
2.73(2)
O(3)
H(4)
3.37(2)
O(1)
H(3)
2.74(2)
O(3)
H(4)
3.37(2)
O(1)
H(4)
3.00(2)
O(3)
C(4)
3.464(2)
O(1)
O(3)
3.215(2)
N(1)
H(4)
3.08(2)
O(1)
C(3)
3.309(2)
N(1)
C(4)
3.398(2)
O(1)
H(6)
3.31(2)
N(1)
C(5)
3.425(2)
O(1)
C(6)
3.382(2)
N(1)
H(4)
3.46(2)
O(1)
O(2)
3.411(2)
N(1)
C(4)
3.464(2)
O(1)
H(6)
3.44(2)
N(1)
C(5)
3.524(2)
O(1)
C(4)
3.466(2)
N(1)
H(5)
3.59(2)
O(1)
C(3)
3.501(2)
C(1)
H(3)
3.39(2)
O(1)
C(6)
3.545(2)
C(1)
H(3)
3.39(2)
O(2)
H(1)
2.75(3)
C(1)
C(1)
3.4023(6)
O(2)
H(4)
2.85(2)
C(1)
C(1)
3.4023(6)
O(2)
O(2)
2.869(3)
C(1)
C(6)
3.471(2)
24
O(2)
H(5)
3.14(2)
C(1)
C(6)
3.487(2)
O(2)
H(5)
3.34(2)
C(2)
C(3)
3.484(2)
O(2)
H(5)
3.39(2)
C(2)
C(4)
3.504(2)
O(2)
C(5)
3.461(2)
C(3)
H(6)
3.35(2)
O(2)
C(5)
3.506(2)
C(3)
C(3)
3.3937(6)
O(3)
H(4)
2.57(2)
C(3)
C(3)
3.3937(6)
O(3)
H(5)
2.79(2)
C(3)
H(3)
3.43(2)
O(3)
H(6)
2.95(2)
C(3)
H(3)
3.52(2)
O(3)
H(1)
3.21(3)
C(3)
H(6)
3.54(2)
O(3)
C(4)
3.246(2)
C(4)
H(6)
3.39(2)
O(3)
C(5)
3.356(2) C(5)
H(5)
3.31(2)
Contacts out to 3.60 Å. Estimated standard deviations in the least significant figure are given
in parentheses.
Figure 2 of S-5: (Left) projection along the a-axis. (Right) Stereoscopic projection of the 2NP structure along the c-axis. The 2-NP single crystals were obtained from vapor
crystallization.
25
Figure 3 of S-5: A schematic representation of the morphologies of the two crystalline
poly-morphs of 2-NP crystal including their face-Miller indices: (Left) 2-NP crystals
obtained by vaporization, (Right) 2-NP crystals grown from cyclohexane-benzene
solution 16 (45% v/v, 55% v/v) at 25 °C.
S-6: References:
(1)
B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, Gromacs 4: Algorithm
for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory
and Computation. 4, 435-447 (2008).
(2)
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C.
Berendsen, Gromacs 4: Fast, Flexible and Free. J. Comput. Chem. 20, 1701-1718 (2005).
(3)
W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rivers, Development and
Testing of the OPLS All Atom Force Field on Conformational Energetics and Properties of
Organic Liquids. J. Am. Chem. Soc., 118, 11225-11236 (1996).
(4)
M. L. P. Price, D. Ostrowsky, and W. L. J. Jorgensen. Gas-Phase and Liquid
State Properties of Esters, Nitriles, and Nitro Compounds with OPLSS-AA Force Field.
Comput. Chem. 22, 1340–1352 (2001).
(5)
(a) J. N. Canongia Lopes and A. A. Pádua. Molecular Force Field for Ionic
Liquids Composed of Triflate or Bistriflylimide Anions. J. Phys. Chem. B, 108, 16893-16898
(2004); (b) J. N. Canongia Lopes and A. A. Pádua. Molecular Force Field for Ionic Liquids
III: Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and
Dicyanamide Anions. J. Phys. Chem. B. 110, 19586-19592 (2006).
26
(6)
S. Nosé. A unified formulation of the constant temperature molecular
dynamics methods. J. Chem. Phys. 81, 511-520 (1984).
(7)
S. Nosé, A molecular dynamics method for simulation in the canonical
ensemble. Mol. Phys. 52, 255 -268 (1984).
(8)
W. G. Hoover. Canonical dynamics Equilibrium phase-space distribution.
Phys. Rev. A. 31, 1695- 1716 (1985).
(9)
M. Parinello and A. Rahman, Polymorphic transitions in single crystals: A new
molecular dynamics method. J. Appl. Phys. 52, 7182-7190 (1981).
(10)
T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: An N⋅log(N)
method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-93 (1993).
(11) U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen,
A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577-93 (1995).
(12)
Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.
Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K.
Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B.
Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G.
Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
(13)
A. D. Becke. Density-functional thermochemistry III. The role of exact
exchange. J. Chem. Phys. 98, 5648-5652 (1993).
27
(14)
C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785-789
(1988)
(15)
C. Gatti, V. R. Saunders, and C. Roetti. Crystal field effects on the topological
properties of the electron density in molecular crystals: The case of urea. J. Chem. Phys. 101,
10686-10696 (1994).
(16)
C. G. Vonk. The small-angle scattering of distorted lamellar structures. J. Appl.
Cryst. 11, 541- 546 (1978).
(18)
(a) J. M. Schultz. The effect of adsorption in the small-angle scattering of X-
rays from stacked lamellae. Acta Cryst. A 26, 93 – 97 (1970).
(b) J. M. Schultz. Rapid small-angle and wide angle X-ray scattering studies of
crystallization behaviour in polymers. J. Polym. Sci. Polym. Phys. Ed. 14, 2291 -2311 (1976).
(19)
J. M. Schultz, J. S. Lin, and R. W. Hendricks. A dynamic study of the
crystallization of polyethylene from the melt. J. Appl. Cryst. 11, 541- 546 (1978).
(20)
V. Schomaker and K. N. Trueblood. On the Rigid Body Motion of Molecules
in Crystals. Acta Cryst. B. 24, 63 -76 (1968).
(21)
K. B. Borisenko, C. W. Bock, and I. Hargittal. Intramolecular Hydrogen
Bonding and Molecular Geometry of 2-Nitrophenol from a Joint Gas-Phase Electron
Diffraction and ab Initio Molecular Orbital Investigation. J. Phys. Chem. 98, 1442-1448
(1994).
(22)
F. Iwasaki and Y. Kawano. The crystal and molecular structure of 2-
nitrophenol. Acta Cryst. B, 38, 1286-1290 (1978).
(23)
J. Bernstein. Polymorphism in Molecular Crystals; Clarendon: Oxford, 2002.
(24)
(a) J. Bernstein, Crystal Growth, Polymorphism and structure-property
relationships in organic crystals. J. Phys. D, 26, B 66 -76 (1993); (b) F. Wöhler and J. Liebig.
Untersuchungen über das Radikal der Benzoesäure. Ann. Pharm. 1832, 3, 249-282 (1832); (c)
H. Reichelt, C. A. Faunce, and H. H. Paradies. Elusive Forms and Structures of NHydroxyphthalimide: The Colorless and Yellow Crystal Forms of N-Hydroxyphthalimide. J.
Phys. Chem. A. 111, 2587 – 2601 (2007).
28