Supplementary Materials for Structures of the 2-nitrophenol alkali complexes in solution and the solid state Hendrik Reichelt, Chester A. Faunce$ and Henrich H. Paradies*# The University of Salford, Joule Physics Laboratory, Manchester M5 4WT, United Kingdom E-Mail: [email protected] $ Deceased # Present address: Jacobs University Bremen, Life Sciences and Chemistry Department, Research III, Campus Ring 1, D-28759 Bremen, Germany Table of Contents: S-1: General Chemistry, Chemical Composition; S-2: Small- and Wide-Angle X-Ray Scattering; S-3: SEM Images of the 2-NP-Me+Molecular Materials; S-4: Crystallographic Data for the 2-NP-Me+Molecular Materials; S-5: Crystallographic Data and Refinement of o-Nitrophenol (2-Nitrophenol); S-6: References 1 S-1: General Chemistry, Chemical Composition and Size Exclusion Chromatography Prior to crystallization the aqueous 2-NP-Me+ dispersions were i) dialyzed to remove additional MeOH in the presence of 15 % (w/w) PEG (200); ii) filtered through a glass frit at 5°C under a nitrogen atmosphere; and finally iii) crystallized as described in the Materials and Methods section. The crystals were stored in a desiccator over P4O10 under N2 prior to chemical analysis. The chemical compositions found were as follows: for Li+2-NP: for Li+-2-NP: C 49.31%, H 3.52%, N 9.62 %, Li 4.89% (theoretical for C6H4NO3Li: C 49.30%, H 3.52%, N 9.60 %, Li 4.80%); Na+-2-NP found C: 44.51%, H: 3.14%, N: 8.61%, Na: 14.25% (theoretical for C6H4NO3Na: C: 44.50%, H: 3.12%, N: 8.6%, Na: 14.23%); K+-2-NP: C: 40.405%, H: 2.86%, N: 7.905%, K: 2.20% (theoretical for C6H4NO3K: C: 40.40%, H: 3.5%, N: 7.90 %, K: 2.18%); Rb+-2-NP found: C: 32.12%, H: 2.30%, N: 6.20%, Rb: 3.83% (theoretical for C6H4NO3Rb: C: 32.09%, H: 2.19%, N:6.20%, Rb 3.81%); Cs+-2-NP found: C: 26.6%, H: 1.98%, N: 5.11%, Cs: 4.92%, (theoretical for C6H4NO3Cs: C: 26.50%, H: 1.90 %, N: 5.09%, Cs: 4.89%). The accuracy was within 0.35% for C, H, and and N absolute of the theoretical value; the precision of samples in triplicate was within 3.2%. The alkali metals were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES, Perkin-Elmer) and were within 0.5%. Size-exclusion chromatography (SEC) of aqueous dispersions of 2-NP-Me+ complexes was carried out using a Waters 150 l chromate graph and a Microstyragel Column accommodating a pore size of 1.0 t0 10 nm (45µm size, molecular weight fraction range between 100 – 2,000 Da). The elution rate was 0.05 mL/min and at the 2 output of the column the solution was passed through a 10 µL cuvette. The eluent was monitored at 680 nm and at 260 nm, respectively, using a Beckmann (DU 64) spectrophotometer. No breakup of the 2-NP-Me+ clusters was observed; if a degradation or dissociation of the clusters were to occur, the 2-NP-Me+ cluster concentration would decrease and there would be a significant increase in the fraction of 2-NP-Me+ materials with lower molecular weights, hence much longer elution time. This was not the case for all 2-NP-Me+ samples. S-2: Small- and Wide-angle X-Ray Scattering The molecular dynamics simulations of the 2-NP-Me+complexes calculations were carried out in Discovery Studio 4.0 (BIOVIA – A Dassault Systèmes brand – 5005 Wateridge Vista Drive, San Diego, CA 92121 USA using the FORCITE program as well as from the GROMACS packages 1,2 obtained from the CPC Program Library, School of Electronics, Electrical Engineering and Computer Science, The Queen's University of Belfast BT7 1NN, Northern The simulation box comprised of 100 Me+-o-NP cations and 100 OH- anions, which was found to be sufficient for calculations at low scattering vectors, Q. The Optimized-Potentials and force-filed parameters for liquid simulation were those of Jorgensen et al. 3 and Price et al. 4; those from Lopez-Pádua 5 were employed to model the system when using the GROMACS packages. The NoséHoover 6-8 thermostats were applied for temperature coupling and the Parinello-Rahman 9 for coupling at constant pressure. The system was equilibrated for approximately 4.0 ns for each temperature. For both programs, the FORCITE and the GROMACS, the Coulomb Lennard-Jones cutoffs were set at 20.0 Å. Furthermore, many simulations of 100 to 150 ps were tried using scaled partial charges. The system was also tried with full atomic charges running about 10 ns when raising or lowering the temperature for 3 achieving proper equilibrium at the specified temperatures and at a pressure of one bar. The electrostatic interactions were calculated employing the Particle-Mesh-Ewald method 10,11 using an interpolation order of five and a Fourier grid with a spacing of 0.5 Å. The structure factor, S(Q), was calculated for temperatures of 200 K, 250 K, 298 K and 350 K using Eq. 13. The form factors in Eq. 13 were obtained from Hahn, T.; Shmueli, U.; Wilson, A. A. J. C.; Prince, E. International Tables for Crystallography 2005, D. Reidel Publishing Company, Dordrecht, Netherlands. Ab-initio calculations of the 2-NPMe+salts were performed using Gaussian 03, Revision C.02, 2004 12, and a basis set of double- ς quality (G 31d1) characterized the C, N, O, Me+ and H atoms. Trial structures were then calculated assuming the molecule to be a rigid body and employing discrete Fourier transform (DFT) calculations. The atomic positions in the 2-NP-Me+salts were optimized by employing the B3LYP approximation for the exchange- correlation functional 13-15. S-2: SAXS and crystallization of the 2-NP-Me+salts from the solution. The individual scattering of the zero-angle peak can be analyzed in terms of an ensemble of tiny lamellae crystallites with different habits e.g. cubes or cylinders where some of their sites extend or protrudes into their solution. Assuming that the crystallites occupy a fraction, α, of a single stack having a period of d, and has values between zero and unity, the zero-angle scattering peak can be interpreted according to Vonk 16 and Schultz 17 (Eq. 1 & 2): I(Q) = IBragg(Q) + Ia(Q) (1). IBragg(Q) ∝ α2 |F1|2 δ(Q - 2πp/d) (2). 4 Here δ(Q - 2πp/d) is the Dirac delta function and is an integer. The diffuse scattering part of I(Q) can be expressed as (Eq. 3): Ia(Q) ∝ (α-1)2 d |F1|2 (3). F1 is the structure factor for one crystallite of thickness T, and can be written as (Eq. 4): |F1|2 = (ρcrys – ρ0)2 𝑄𝑄 ) 2 𝑄 2 ( 𝑇) 2 𝑠𝑠𝑠2 ( (4). It follows that the zero-angle scattering peak, Ia(Q) appears symmetric in the site occupancy α and exhibits a maximum intensity for α = 0.5. For the crystallite growth the magnitude of Ia(Q) should be initially controlled by their individual crystallite, and with time it moves into the gap in the stacking (Babinet’s principle), where individual lamellae scatter in the same manner as individual gaps. However, when crystallization progressed IBragg(Q) increases and Ia(Q) approaches a maximum 18. 5 S-3: SEM Images of the 2-NP-Me+Molecular Materials Figure 1 of S-3: Single crystal SEM images of the 2-NP-X+ salt complexes for a sample concentrations of 30 mM at 5 °C; (A) 2-NP-Li+; (B) 2-NP-Na+; (C) 2-NPK+; (D) 2-NP-Rb+ and (E) 2-NP-Cs+. The scale bar is 1.0 µm. (F) Selected single crystal images taken with a JOEL 6400 SEM: (a) 2-NP-Li+; (b) 2-NP-Na+; (c) 2-NPK+; (d) 2-NP-Rb+ and (e) 2-NP-Cs+. The scale bar is 1µm (A - F). S-4: Crystallographic Data for the 2-NP-Me+ Salt Materials. 6 Figure 1 of S-3: Numbering scheme of the 2-NP-Me+ salt. Table 1 of S-3: Atomic coordinates and equivalent isotropic thermal parameters for the 2NP-Me+ salts. 2-NP-Li+: Atom X Y Z B(Eq.) Li (1) 2.838(6) 1.382(9) 3.084 2.41(4) O (1) 7.797(4) -1.01(2) 5.634(9) 1.62(2) O (2) 4.264(5) 0.567(3) 4.168(5) 1.92(1) O (3) -0.0361(9) 0.03475(8) 0.3343(7) 3.32(2) N (1) 0.0407(3) 0.0259 0.2879 2.64(4) C (1) 0.2999(2) 0.3739(9) 0.2091(4) 2.26 (4) C (2) 0.2028(4) 0.2622(2) 0.0226(4) 2.25 (4) C (3) 0.2969(2) 0.1572(4) 0.1760(4) 3.14 (4) C (4) 0.4815(3) 0.3651(4) 0.1601(7) 2.34 (4) C (5) 0.5638 0.2638 0.1176(7) 2.19 (4) C (6) 0.4732(6) 0.1615 0.1242(5) 2.07 (4) H (1) 0.2304 0.0764 0.1796 3.7)5) H (2) 0.5416 0.0846 0.0088 3.0(5) H (3) 0.7016 0.2636 0.0780 2.4(4) H (4) 0.5596 0.4414 0.1550 2.2(4) 2-NP-Na+: Atom X Y Z B(Eq.) Na (1) 1.1827(9) 0.7165 0.95648(6) 2.71(4) O (1) 0.983(1) 1.1937 0.8928(8) 1.62(2) O (2) 0.401(1) 1.729(9) 0.8242(8) 1.92(1) O (3) 0.662(2) 1.712(1) 0.938(1) 3.32(2) N (1) 0.582(2) 1.597(7) 0.847(1) 2.64(4) C (1) 0.896(2) 1.301(7) 0.7958(6) 2.33(4) C (2) 0.697(2) 1.437(6) 0.07754(8) 2.34 (4) C (3) 0.605(1) 1.444(6) 0.675(1) 3.32(5) C (4) 0.711(2) 1.315(7) 0.5945(7) 2.54(4) 7 C (5) 0.909(2) 1.179(7) 0.614987) 2.04(5) C (6) 1.002(1) 1.172(7) 0.715588) 1.94(4) H (1) 0.4692 1.5362 0.6609 3.9 H (2) 0.6475 1.3197 0.5260 3.0 H (3) 0.9815 1.0916 0.5602 2.4 H (4) 1.1373 1.0800 0.7294 2.3 2-NP-K+: Atom X Y Z B(Eq.) K (1) -0.1238(5) -0.799(9) 9.157 2.95(2) O (1) 0.617(4) 0.592(7) 0.592 9.632(2) O (2) 2.107(7) 1.172(3) 5.842(2) 1.91(5) O (3) 0.44(8) 0.224(6) 6.806(2) 2.96(4) N (1) 1.616(9) 0.639(7) 6.859 2.64(4) C (1) 1.771(1)) -0.149(5) 9.184(5) 2.33(4) C (2) 2.319(1) 0.506(5) 7.954(4) 2.34 (4) C (3) 3.727(6) 0.967(8) 8.014(4) 3.32(5) C (4) 2.619(3) -0.351 10.266(4) 2.54(4) C (5) 3.946(4) 00.08(1) 10.247(2) 2.04(5) C (6) 4.488(6) 0.734(4) 9.148 1.94(4) H (1) 4.182(7) 1.477(1) 7.177 3.9 H (2) 5.519(1) 1.063(4) 9.175 3.0 H (3) 4.572 -0.105(8) 11.10(8) 2.4 H (4) 2.26(9) -0.872(8) 11.14(3) 2.3 Atom X Y Z B(Eq.) Rb (1) 5.976(5) -0.334(4) 14.167(1) 3.05(4) O (1) 5.144(5) 1.053(7) 12.081(9) 1.63(2) O (2) 2.496(8) -0.239(7) 9.221 1.95(1) O (3) 3.078(5) -0.691 11.227(4) 3.35(2) N (1) 3.359(7) -0.205(7) 110.112(3) 2.74(4) C (1) 5.595(7) 0.319 10.983 2.36(4) C (2) 4.539(3) 0.315(3) 9.89(7) 2.34 (4) 2-NP-Rb+: 8 C (3) 4.88(9) 0.882(8) 8.564(3) 3.36(5) C (4) 6.874 0.81(9) 10.579 2.57(4) C (5) 7.133(1) 1.324 9.308(6) 2.14(5) C (6) 6.156(7) 1.365 8.322(4) 1.98(4) H (1) 4.146 0.926 7.771 3.9 H (2) 6.395(7) 1.775(6) 7.352 3.7 H (3) 8.121(2) 1.698(2) 9.081 2.2 H (4) 7.683(8) 0.787(9) 11.298(6) 2.3 Atom X Y Z B(Eq.) Cs (1) 2.328 2.932(5) 7.353 3.51(2) O (1) 5.604 1.804(1) 6.767 1.65(2) O (2) 3.343 5.155 6.167 1.90(1) O (3) 5.383 4.645 6.604 3.45(2) N (1) 4.168 4.363 6.668 2.54(4) C (1) 4.788 2.271 7.798 2.46(4) C (2) 3.771 3.256 7.243 2.37 (4) C (3) 2.328 2.932 7.353 3.30(5) C (4) 4.224 1.153 8.483 2.55(4) C (5) 2.854 0.889 8.528 2.14(5) C (6) 1.925 1.759 7.972 1.96(4) H (1) 1.574 3.593 6.944 4.0(1) H (2) 0.872 1.526 8.036 3.0 H (3) 2.504 0.002(4) 9.04(3) 2.5 H (4) 4.895 0.471(9) 9.04(2) 2.1 2-NP-Cs+: 𝟖 Beq = π2 (U11 (aa*)2 + U22 (bb*)2 + U33 (cc*)2 + 2U12 aa*bb* cosγ + 2U13 aa*cc* cosβ + 2U23 bb* cc* cos α). 𝟑 Table 2 of S-4: Anisotropic displacement parameters for the 2-NP-Me+ salts. 2-NP-Li+: Atom U11 U22 U33 U12 U13 U23 Li 0.025(3) 0.040(7) 0.038(4) -0.008(9) 0.003 -0.03(1) O (1) 0.020839 0.063(9) 0.0171 -0.058 0.011 -0.073 O (2) 0.024(3) 0.0240(7) 0.059(1) 9 -0.0102(6) 0.0139(7) -0.0019(6) O (3) 0.041(4) 0.0257(8) 0.042(1) 0.0044(4) 0.002 -0.013 N (1) 0.032(5 0.0175(7) 0.030(7) 0.0023 -0.01 0.008 C (1) 0.032(5) 0.0425 0.035(6) 0.057 0.007 -0.003 C (2) 0.029(5) 0.0191(7) 0.096(3) -0.003 -0.03 0.0046 C (3) 0.041(7) 0.043 0.081(5) 0.020 -0.03 -0.0246 C (4) 0.032(5) 0.0456 0.048(6) 0.0316 -0.01 -0.0175 C (5) 0.026(5) 0.033 0.051(6) 0.004 0.006 -0.0064 C (6) 0.024(5) 0.0224 0.0425 0.008(4) -0.04 0.0014 H (1) 0.0498 H (2) 0.0385 H (3) 0.0307 H (4) 0.0292 2-NP-Na+: Atom U11 U22 U33 U12 U13 U23 Na 0.028(3) 0.040(7) 0.038(4) -0.007(9) 0.005 -0.02(1) O (1) 0.0209(9) 0.0685 0.169(6) 0.0547 -0.11 -0.073(8) O (2) 0.025(3) 0.023(7) 0.044(7) 0.0240(7) -0.007 -0.013 O (3) 0.041(4) 0.0257(8) 0.075(5) 0.091 -0.002 -0.014(4) N (1) 0.032(5) 0.0183(7) 0.038(5) 0.002(3) -0.010(7) 0.008(3) C (1) 0.032(5) 0.028(5) 0.047(5) 0.012(4) -0.012(5) -0.011(4) C (2) 0.029(5) 0.022(4) 0.043(5) 0.011(4) -0.007(4) 0.000(4) C (3) 0.041(7) 0.0717 0.0536 0.0086 -0.0015 -0.0275 C (4) 0.032(5) 0.062(6) 0.047(6) 0.013(6) -0.007(4) 0.000(4) C (5) 0.026(5) 0.039(5) 0.027(5) -0.006(5) -0.001(5) -0.027(5) C (6) 0.024(5) 0.053(6) 0.029(5) -0.008(5) -0.011(5) -0.035(5) H (1) 0.0498 H (2) 0.0385 H (3) 0.0307 H (4) 0.0292 2-NP-K+: Atom U11 U22 U33 U12 U13 U23 K 0.025(3) 0.040(7) 0.038(4) -0.008(9) 0.003 -0.03(1) O (1) 0.020839 0.0685 0.169(6) 0.054(7) -0.11 -0.0738 10 O (2) 0.024(3) 0.023(7) 0.044(7) 0.0240(7) -0.007 -0.013 O (3) 0.041(4) 0.0257(8) 0.075(5) 0.091 -0.002 -0.014(4) N (1) 0.032(5 0.0183(7) 0.038(5) 0.002(3) -0.010(7) 0.008(3) C (1) 0.032(5) 0.032(7) 0.0568 0.006(7) -0.003(4) 0.010(5) C (2) 0.029(5) 0.031(8) 0.0956 -0.006(7) -0.032(6) 0.004(6) C (3) 0.041(7) 0.040(7) 0.0813 0.022(3) -0.022(7) -0.021(9) C (4) 0.032(5) 0.057(8) 0.0438 0.031(9) -0.007(8) -0.145 C (5) 0.026(5) 0.034(5) 0.0503 0.007(6) 0.005(4) -0.005(4) C (6) 0.024(5) 0.020(8) 0.0407 0.006(9) -0.003(4) 0.001(8) H (1) 0.0498 H (2) 0.0385 H (3) 0.0307 H (4) 0.0292 2-NP-Rb+: Atom U11 U22 U33 U12 U13 U23 Rb 0.025(3) 0.040(7) 0.038(4) -0.008(9) 0.003(3) -0.03(1) O (1) 0.020839 0.070(3) 0.172(8) -0.002(6) -0.116(5) 0.073(5) O (2) 0.024(3) 0.043(5) 0.047(8) 0.065(7) -0.006(3) 0.013(3) O (3) 0.041(4) 0.0257(8) 0.099(8) -0.002(8) -0.015(4) 0.034(5) N (1) 0.032(5 0.0183(7) 0.035(6) 0.003(4) -0.010(4) 0.007(8) C (1) 0.032(5) 0.038(7) 0.056(7) 0.007(5) -0.004(5) 0.0011(4) C (2) 0.029(5) 0.034(6) 0.089(7) -0.003(5) -0.032(4) 0.003(5) C (3) 0.041(7) 0.045(7) 0.082(7) 0.030(7) -0.031(7) -0.002(5) C (4) 0.032(5) 0.054(7) 0.048(7) 0.031(6) -0.007(8) -0.017(5) C (5) 0.026(5) 0.036(8) 0.054(3) 0.006(9) 0.006(4) -0.006(5) C (6) 0.024(5) 0.024(5) 0.042(8) 0.007(8) -0.004(5) 0.002(3) H (1) 0.0498 H (2) 0.0385 H (3) 0.0307 H (4) 0.0292 2-NP-Cs+: Atom U11 U22 U33 U12 U13 U23 Cs 0.125(3) 0.080(7) 0.078(4) 0.003(9) 0.01(3) -0.0126(1) 11 O (1) 0.070((3) 0.095(4) 0.086(4) -0.011(3) -0.01(3) 0.0253 O (2) 0.145(3) 0.071(9) 0.07(1) -0.027(4) 0.04(1) -0.017(9) O (3) 0.141(4) 0.1257(8) 0.171(7) -0.002(5) 0.004(5) -0.065(5) N (1) 0.062(5) 0.066(8) 0.064(4) 0.001(4) -0.007(3) 0.000(3) C (1) 0.092(5) 0.060(5) 0.083(6) -0.006(5) 0.015(5) 0.001(5) C (2) 0.019(5) 0.097(5) 0.102(8) -0.034(8) 0.006(7) 0.001(7) C (3) 0.141(7) 0.087(9) 0.16(1) -0.028(9) -0.053(9) 0.039(1) C (4) 0.092(5) 0.052(7) 0.22(2) 0.000(6) -0.011(9) 0.0014(9) C (5) 0.076(5) 0.081(7) 0.161(4) -0.003(6) 0.006(6) -0.030(7) C (6) 0.064(5) 0.055(5) 0.087(6) -0.002(4) -0.017(5) -0.004(5) H (1) 0.0498 H (2) 0.0385 H (3) 0.0307 H (4) 0.0292 The general expression for the temperature factor was: exp (-2π2 [a*2U11h2 + b*2U22k2 + c*2U33l2 + 2a*b*U12hl + 2b*c*U23kl]). Rigid-body thermal parameters were employed 19 in order to improve the accuracy of the positional parameters. The values for the 2-NP-Na+ salt and the 2-NP-Cs+ salt are listed in Table 4. The parameters for the 2-NP-Rb+ and the 2-NP-K+ salts were very similar to those of the 2-NP-Na+ salt and the 2-NP-Li+ salt was similar to that of the 2-NP-Cs+ salt. Table 4 of S-4: Molecular Vibrational tensors for the Na+- 2-NP and the Cs+-2-NP-salt Translation T (x 103) in Å3 Na: 42(2) Libration L in degrees2 4(3) 2(1) 26(2) 0(2) 55(6) -10(7) -10(3) 30(7) -4(-7) 34(4) Cs: 34(5) 6(2) (2) 18(4) 2(4) 26(4) 65(3) 36(7) -24(5) 3(5) 24(4) -12(-17) 3284) 12 Direction (cosines x 10-3) R.M.S Amplitude 0.215 (Na); (0.348, Cs) 815 (Na); (765, Cs) -150 (Na); (-127, Cs) -300 (Na); (200, Cs) 0.190 (Na); (0.42, Cs) 230 (Na); (203, Cs) 485( Na), (402, Cs) 620 (Na); (340, Cs) 0.252 (Na), (0.321, Cs) 70( Na); (0.432, Cs) 695 (Na); (560, Cs) -790 (Na); (110, Cs) 4.07 (Na), (4.76, Cs) 900 (Na); (5.02, Cs) 175 (Na); (125, Cs) -620 (Na); (-140, Cs) 6.05 (Na); (6.97, Cs) 500 (Na); (430, Cs) 12 (Na; (17, Cs ) 700 (Na); (354, Cs) 7.00 Na), (7.56, Cs) -150 (Na) -132, Cs) 970(Na), (865, Cs) 71 (Na); (123, Cs) R.m.s: ∆ (Uij) = 0.0065 Å2 (Na) and 0.0087 Å2 (Cs), respectively Table 5 of S-4: Intramolecular distances (Å) of the 2-nitrophenol-structure of the Me+-Salts involving the non-hydrogen atoms Atom Atom Distance Atom Atom Distance O (1) C (1) 1.403 (1) C (1) C (6) 1.405(3) O (2) N (1) 1.294 (3) C (2) C (3) 1.399(6) O (3) N (1) 1.313 (2) C (3) C (4) 1. 409(9) N (1) C (2) 1.393(2) C (4) C (5) 1.403(3) C (1) C (2) 1.401(2) C (5) C (6) 1.398(1) Estimated standard deviations in the least significant figure are given in parentheses. Table 6 of S-4: Intramolecular Bond Angles involving the non-hydrogen atoms Atom Atom Atom Angle Atom Atom Atom Angle O (2) N (1) O (3) 112.5(2) N (1) C (2) C (3) 115.1(1) O (2) N (1) C (2) 123.2(1) C (1) C (2) C (3) 120.0 (1) O (3) N (1) C (2) 124.0(1) C (2) C (3) C (4) 120.0 (1) O (1) C (1) C (2) 125.0(1) C (3) C (4) C (5) 120.0 (1) O (1) C (1) C (1) 113.1(1) C (4) C (5) C (6) 120.0 (1) C (2) C (1) C (6) 120.0(9) C (1) C (6) C (5) 120 (1) N (1) C (2) C (19 124.9(1) 13 Estimated standard deviations in the least significant figure are given in parentheses. Angles are in degrees. Table 7 of S-4: Selected Torsion or Conformational Angles (in degrees) of the 2nitrophenol-Me+-Salts. (1) (2) (3) (4) Angle O (1) C (1) C (2) N (1) 23.1 (4) O (1) C (1) C (2) C (3) -163.0(2) O (1) C (1) C (6) C (5) 164.0 (2) O (2) N (1) C (2) C (1) 178.3(3) O (2) N (1) C (2) C (3) 3.03(4) O (3) N (1) C (2) C (1) 14.4(4) O (3) N (1) C (2) C (3) -162.2(3) N (1) C (2) C (1) C (6) -175.3(2) N (1) C (2) C (3) C (4) 175.1(2) C (1) C (2) C (3) C (4) 0(5) C (1) C (6) C (5) C (4) 0(3) C (2) C (1) C (6) C (5) 0(1) C (2) C (3) C (4) C (5) 0(6) C (3) C (2) C (1) C (6) 0(1) C (3) C (4) C (5) C (6) 0(3) The sign is positive if when looking from atom 2 to atom 3 a clockwise motion of atom 1 would superimpose it on atom 4. Figure 2 of S-4: A convenient numbering scheme for the superstructures of 2-NP-Li+ (A), 2-NP-Na+, K+- and 2-NP-Rb+ (B) and (C) for 2-NP-Cs+. 14 Figure 3 of S-4: (A) Trigonal prismatic arrangement of the 2-NP ligands around the central Li+ (D3h); (B) The Na+ coordination sphere showing six-coordinate geometry, where the sodium ion is coordinated by six bonds, arranged at the vertices of an octahedral assembly (D2h). (C) Super-molecular structure of the 2-NP-K+ where the ligands are arranged around the K+ ion, forming a trigonal prism (D3h), (D) 2-NP-Cs+ structure with a coordination number of eight where the Cs+ ion shows a square antiprismatic arrangement (D4d). Table 7 of S-4: Selected Intermolecular Distances (Å) with Contacts out to 3.60 Å. A.-2-NP-Li+: Atom Atom Distance Atom Atom Distance Li (11) O (11) 2.840(5) C (24) N (29) 2.451(7) Li (11) O (46) 2.9416 Li (11) Li (11) 2.935 Li (11) O (46) 2.942(8) Li (11) Li (11’) 2.936 Li (11) O (10) 2.9096) Li (11) N (8) 2.987(6) Li (11) O (18) 2.8963) C (2) O (7) 2.449(7) Li (11) O (20) 2.8694) O (46) C (47) 2.401(2) Li (11) O (28) 2.831(8) O (46) C (42) 2.401(2) O (31) N (29) 2.249(1) C (42) C (41) 2.40(0) N (8) O (9) 2.24719 C (1) C (2) 3.399(9) N (8) O (10) 2.3609) C (1) C (6) 3.394(9) C (14) N (19) 2.439 C (2) C (3) 3.41582) N (19) O (20) 2.355(8) C (3) C (4) 3.406(9) 15 N (19) O (21) 2.247(4) C (4) C (5) 3.392(5) O (30) N (29) 2.357(4) C (5) C (6) 3.392(5) Symmetry code: (1) x,y,z; -x, -y, -z; (2) -x, ½ +y, ½ -z; (3) x, ½ -y, ½ +z B. – 2-NP-Na+: Atom Atom Distance Atom Atom Distance Na (11) O (54) 2.298(7) Na (11) O (3) 3.16(5) Na (11) O (28) 2.341(1) Na (11) N (1) 3.19(7) Na (11) O (10) 2.310(2) Na (11) Na (11) 3.313(5) Na (11) O (53) 2.429(7) Na (11) Na (11) 3.315(3) Na (11) O (43) 2.440(3) Na (11) O (43) 3.40(1) Na (11) O (18) 2.491(3) Na (11) C (1) 3.44(2) Na (11) N(8) 3.13 (2) O (1) O (3) 2.872(3) O (10) O (28) 3.342(5) O (3) O (3) 3.332(1) O (52) O (53) 3.342(5) O (3) O (3) 3.334(1) O (28) O (20) 3.410(8) O (44) C (39) 3.412 O (1) N(8) 3.434(7) O (54) C (49) 3.453 O (1) C (1) 3.552(3) O (53) N (51) 3.514(2) O (1) O (2) 3.553(7) N (8) C (2) 3.343(2) O (2) C (6) 3.285(1) N (8) C (24) 3.413(4) O (20) C (2) 3.355(7) C (1) C (2) 3.443(7) O (21) N (19) 3.424(5) C (1) C (6) 3.473(4) O (2) C (6) 3.513(2) C (15) C (16) 3.473 C (3) C (5) 3.502(3) C (16) C (17) 3.443(2) Atom Atom Distance Atom Atom Distance K (11) O (10) 3.393(6) K (11) O (3) 3.256 K (11) O (28) 3.425(9) K (11) N (1) 3.256 K (11) O (52) 3.404(5) K (11) K (11) 3.456 K (11) O (66) 3.353(1) K (11) K (11) 3.461 K (11) O (67) 3.377(7) K (11) O (43) 3.342 K (11) O (18) 3.416(2) K (11) C (1) 3.49 C. - 2-NP-K+: 16 K (11) N(8) 3.173 O (1) O (3) 2.872(3) O (10) O (28) 3.342(5) O (3) O (3) 3.332(1) O (52) O (53) 3.342(5) O (3) O (3) 3.334(1) O (28) O (20) 3.410(8) O (44) C (39) 3.412 O (1) N(8) 3.434(7) O (54) C (49) 3.453 O (1) C (1) 3.552(3) O (53) N (51) 3.514(2) O (1) O (2) 3.553(7) N (8) C (2) 3.343(2) O (2) C (6) 3.285(1) N (8) C (24) 3.413(4) O (20) C (2) 3.355(7) C (1) C (2) 3.443(7) O (21) N (19) 3.424(5) C (13) C (14) 3.413(4) O (2) C (6) 3.513(2) C (14) C (15) 3.407 C (3) C (5) 3.502(3) C (44) C (149) 3.403(2) Atom Atom Distance Atom Atom Distance Rb (11) O (10) 3.660(5) Rb (11) O (3) 3.345 Rb (11) O (28) 3.668(7) Rb (11) N (1) 3.245 Rb (11) O (28) 3.701(4) Rb (11) Rb (11) 3.652 Rb (11) O (53) 3.657 Rb (11) Rb (11) 3.652 Rb (11) O (43) 3.647(7) Rb (11) O (43) 3.764(1) Rb (11) O (58) 3.6425 Rb (11) C (1) 3.43(4) Rb (11) N(8) 3.2015 O (1) O (3) 2.872(3) O (10) O (28) 3.342(5) O (3) O (3) 3.332(1) O (52) O (53) 3.342(5) O (3) O (3) 3.334(1) O (28) O (20) 3.410(8) O (44) C (39) 3.412 O (1) N(8) 3.434(7) O (54) C (49) 3.453 O (1) C (1) 3.552(3) O (53) N (51) 3.514(2) O (1) O (2) 3.553(7) N (8) C (2) 3.343(2) O (2) C (6) 3.285(1) N (8) C (24) 3.413(4) O (20) C (2) 3.355(7) C (1) C (2) 3.443(7) O (21) N (19) 3.424(5) C (1) C (6) 3.473(4) O (2) C (6) 3.513(2) C (15) C (16) 3.473 C (3) C (5) 3.502(3) C (16) C (17) 3.443(2) D. - 2-NP-Rb+: Symmetry code: (1) x, y, z; (2) –x. ½ +y, -z; 17 E. - 2-NP-Cs+: Atom Atom Distance Atom Atom Distance Cs (11) O (10) 4.02(3) Cs (11) O (10) 2.947(6) Cs (11) O (18) 3.14(1) Cs (11) Cs (11) 3.69(2) Cs (11) O (28) 3.314(1) N (29) O (30) 3.912(3) Cs (11) O (43) 3.14(8) Cs (11) Cs (11) 3.70(1) Cs (11) O (54) 3.41(3) Cs (11) Cs (11) 7.34(2) Cs (11) O (55) 3.908 C (14) C (15) 3.163 Cs (11) O (63) 3.865 C (15) C (16) 3.685 C (1) C (2) 3.54(8) C (16) C (17) 4.022 C (2) C (3) 3.984 C (17) C (12) 3.142 C (3) C (4) 3.201 C (13) O (18) 3.138 C (4) C (5) 3.529 C (22) C (23) 3.72(1) C (5) C (6) 3.9768 C (23) C (24) 3.161 C (6) C (1) 3.183 C (24) C (25) 4.010 C (2) O (7) 3.074 C (25) C (26) 3.680 C (3) N (8) 3.681 C (26) C (27) 3.113 N (8) O (9) 3.84(5) C (27) C (22) 3.954 N (8) O (10) 3.169(8) C (23) O (28) 3.9651 C (12) C (13) 3.677 C (24) N (29) 3.813 C (13) C (14) 4.08(8) N (29) O (31) 2.9547 Symmetry code: (1) x, y, z; (2) –x, -y, z + ½; (3) x + ½, -y, z; (4) –x + ½, y, z + ½. Estimated standard deviations in the least significant figure are given in parentheses. Table 8 of S-4: Intermolecular Hydrogen-Bonding Donor Atom Acceptor Atom Distance (Å) Angle XDA (°) Angle DAY (°) O (7) O (28) 3.180 60.74 49.5 O (7) O (43) 2.625 125.5 58.0 O (7) O (66) 2.217 147.4 67.1 O (44) O (66) 3.037 134.2 103.8 O (44) O (63) 2.944 71.8 57.5 18 O (20) O (42) 2.809 59.1 158.9 O (20) O (54) 2.294 107.1 95.9 O (20) O (55) 2.552 96.1 96.3 S-5: Crystallographic Data for 2-nitrophenol: Figure 1 of S-4: Numbering scheme of 2-nitrophenol Summary The 2-nitrophenol molecule was planar. The largest deviation from the phenyl ring plane was 0.07 Å (0.003 Å) for the O (3), one of the nitro-group oxygens. The hydroxyl group of the 2-NP (H 1) forms an intramolecular hydrogen bond to one of the oxygen atoms (O (2)) of the nitro group (2.385 Å), the O (1) ▪▪▪ O (21) distance was 2.589 Å (2.602 Å), the H▪▪▪ O (21) distance was 1.71(3) Å (1.91 Å) and the O (21) – H ▪▪▪ O hydrogen bond angle was 148(1)°(143°). There were no significant intermolecular contacts. The distance between the hydrogen (H 1) and the phenolic oxygen (O 2) was 0.967(9) Å, close to the one determined by Borisenko et al 20 from electron-diffraction studies and ab initio molecular orbital calculations of 0.969 Å. The figures marked in red represent correspond to the crystal structure of 2-NP reported by Iwasaki & Kawano 21 assuming a space group of P21/a. We were able to confirm this structure when the crystals were obtained from cyclohexane-benzene solutions (45% v/v, 55% v/v) at 25 °C. These crystals exhibit yellow pillars whereas the 2-NP crystals obtained from vaporization show a prismatic habit and were light yellow in color. The differences in 19 habit and color are probably a result of polymorphism 22. Polymorphs reveal different physical and sometimes chemical properties, depending on the material, and on the nature and composition of the solvent and temperature, which are all related to crystal growth 23 . Furthermore, the 2-NP crystals that formed as yellow pillars, obtained from a cyclohexanebenzene solution, at ambient temperatures, with similar unit cell dimensions were reported previously by Iwasaki & Kawano 21 . Whereas, the 2-NP crystals obtained from vaporization show a prismatic habit and were light yellow in color. The differences in habit and color are probably a result of polymorphism. Polymorphs reveal different physical and sometimes chemical properties, depending on the material the nature and composition of the solvent and temperature, which are all related to crystal growth. Experimental Details Empirical Formula C6H5NO3 Formula Weight 139.11 Crystal Color, Habit yellow, prism Crystal Dimensions (mm) 0.400 x 0.200 x 0.200 Crystal System monoclinic No. Reflections Used for Unit Cell Determination (2θ range) Omega Scan Peak Width at Half-height Lattice Parameters (Å) 25 (79.0 – 80.0°) 0.30 In degrees (°) A3 a= b= c= β= V= Space Group P21/c (#14); Z value 4 Dcalc g/cm3 1.547, 1.495 F000 288 µ(CuKα) 10.40 cm-1 Diffractometer Rigaku AFC5R Radiation CuKα (λ = 1.54178 Å) Temperature -120°C Attenuators Zr foil (factors: 3.6, 12.2, 44.0) 20 6.3688 (6) 6.876 14.3424 (6) 14.389 6.7254 (6) 6.439 103.497 (8), 103.79 597.36 (9), 614.10 P21/a (#14) Take-off Angle 6.0° Scan Type Ω-2θ Scan Rate 32.0°/min (in omega) (2 rescans) Scan Width (1.31 + 0.30 tanθ)° 2θmax 120.2° No. of Reflections Measured Corrections Total: 1029 Unique: 941 (Rint = .066) Lorentz-polarization Absorption (trans. factors: 0.75 – 1.43) Structure Solution Direct Methods Hydrogen Atom Treatment Refined Refinement Full-matrix least-squares Function Minimized ∑w (│Fo│-│Fc│)2 Least-squares Weights 4Fo2/σ2(F02) p-factor 0.03 Anomalous Dispersion All non-hydrogen atoms No. Observation (I>3.00σ(I)) 838 No. Variables 111 Reflection/Parameter Ratio 7.55 Residuals: R; Rw 0.041; 0.058 Goodness of Fit Indicator 2.97 Max Shift/Error in Final Cycle 0.09 Maximum Peak in Final Diff. Map 0.20 e-/ Å3 Minimum Peak in Final Diff. Map -0.26 e-/ Å3 Table 1 of S 5: Position Parameters and Beq for 2-nitrophenol Atom x y z B(eq) O(1) 0.8831(2) 0.1752(1) 0.0516(2) 3.33(6) O(2) 1.1756(2) 0.04658(9) 0.1363(2) 3.55(6) O(3) 1.5120(2) 0.0819(1) 0.2382(2) 3.69(6) N(1) 1.3237(2) 0.1045(1) 0.1800(2) 2.55(6) C(1) 1.0548(3) 0.2319(1) 0.1008(2) 2.38(7) 21 C(2) 1.2692(3) 0.2029(1) 0.1626(2) 2.26(7) C(3) 1.4388(3) 0.2660(1) 0.2108(2) 2.32(7) C(4) 1.3963(3) 0.3599(1) 0.2010(3) 2.68(7) C(5) 1.1832(3) 0.3901(1) 0.1414(3) 2.97(8) C(6) 1.0167(3) 0.3280(1) 0.0937(3) 2.81(7) H(1) 0.947(5) 0.114(2) 0.085(4) 6.5(7) H(3) 1.582(3) 0.241(1) 0.249(2) 1.5(3) H(4) 1.512(3) 0.403(1) 0.238(3) 2.3(4) H(5) 1.149(3) 0.456(2) 0.134(3) 3.1(4) H(6) 0.871(3) 0.344(1) 0.058(3) 2.9(4) Table 2 of S-5: Anisotropic displacement parameters for the 2-nitrophenol Atom U11 U22 U33 U12 U13 U23 O(1) 0.0341(8) 0.0411(9) 0.0531(9) -0.0055(6) 0.0136(6) 0.0016(6) O(2) 0.0520(9) 0.0240(7) 0.059(1) -0.0102(6) 0.0139(7) -0.0019(6) O(3) 0.0408(8) 0.0257(8) 0.075(1) 0.0070(6) 0.0156(7) 0.0049(6) N(1) 0.040(1) 0.0183(7) 0.0419(9) -0.0025(9) 0.0168(7) -0.0004(5) C(1) 0.033(1) 0.032(1) 0.029(1) -0.0013(7) 0.0129(7) 0.0017(7) C(2) 0.038(1) 0.0201(9) 0.033(1) 0.0012(7) 0.0168(7) 0.0008(7) C(3) 0.033(1) 0.025(1) 0.033(1) -0.0004(7) 0.0123(7) -0.0003(7) C(4) 0.046(1) 0.020(1) 0.039(1) -0.0045(8) 0.0164(8) -0.0014(7) C(5) 0.055(1) 0.022(1) 0.040(1) 0.0069(8) 0.0200(9) 0.0016(7) C(6) 0.039(1) 0.036(1) 0.035(1) 0.0090(8) 0.0138(8) 0.0024(7) H(1) 0.083(9) H(3) 0.019(4) H(4) 0.030(5) H(5) 0.040(5) H(6) 0.037(5) Table 3 of S-5: Intramolecular Distances Atom Atom Distance Atom 22 Atom Distance O(1) C(1) 1.341(2) C(3) C(4) 1.373(3) O(1) H(1) 0.97(3) C(3) H(3) 0.96(2) O(2) N(1) 1.240(2) C(4) C(5) 1.392(3) O(3) N(1) 1.215(2) C(4) H(4) 0.95(2) N(1) C(2) 1.452(2) C(5) C(6) 1.365(3) C(1) C(2) 1.395(3) C(5) H(5) 0.97(2) C(1) C(6) 1.397(3) C(6) H(6) 0.93(2) C(2) C(3) 1.388(3) Table 4 of S-5: Least-Squares Planes: Plane number 1 Atoms Defining Plane Distance (Å) esd C (1) C (2) C (3) C (4) C(5) C (6) 0.0062 -0.0060 0.0020 0.0001 0.0004 -0.0042 0.0016 0.0016 0.0015 0.0017 0.0017 0.0017 Table 5 of S-5: Intramolecular bond angles Atom Atom Atom Angle Atom Atom Atom Angle C (1) O (2) O (2) O (3) O (1) O (1) C (2) N (1) N (1) C (1) C (2) O (1) N (1) N (1) N (1) C (1) C (1) C (1) C (2) C (2) C (2) C (3) H (1) O (3) C (2) C (2) C (2) C (6) C 86) C (1) C (3) C (3) C (4) 103(2) 122.5(1) 118.5(1) 119.0(1) 125.2(2) 117.7(2) 117.1(2) 120.9(2) 117.2(2) 121.9(2) 119.6(29 C (2) C (4) C (3) C (3) C (5) C (4) C (4) C (6) C (1) C (1) C (5) C (3) C (3) C (4) C (4) C (4) C (5) C (5) C (5) C (6) C (6) C (6) H (3) H (3) C (5) H (4) H (4) C (6) H (5) H (5) C (5) H (6) H (6) 117(1) 123(1) 119.2(2) 120(1) 121(1) 121.1(2) 121(1) 118(1) 121.1(2) 114(1) 125(1) Angles are in degrees. Estimated standard deviations in the least significant figure are shown in parenthesis. 23 Table 6 of S-5: Torsion or conformational angles (1) (2) (3) (4) angle (1) (2) (3) (4) angle O (1) O (1) O (1) O (1) O (2) O (3) O (3) O (3) N (1) N (1) N (1) C (1) C (1) C (1) C (1) C (1) C (1) C (1) C (1) N (1) N (1) N (1) N (1) C (2) C (2) C (2) C (2) C (2) C (6) C (6) C (2) C (2) C (6) C (6) C (2) C (2) C (2) C (2) C (1) C (3) C (3) C (3) C (3) C (5) C (5) N (1) C (3) C (5) H (6) C (1) C (3) C (1) C (3) C (6) C (4) H (3) C (4) H (3) C (4) H (5) -0.43 179.9(3) 180.9(3) 2(1) 0.9(2) -179.4(2) -178.5(2) 1.2(2) 178.3(1) -178.7(1) 1(1) 1.1(2) -179(1)1 -0.7(3) 180(1) C (2) C (2) C (2) C (2) C (2) C (3) C (3) C (3) C (4) C (5) C (6) C (6) H (3) H (4) H (5) C (1) C (1) C (1) C (3) C (3) C (2) C (4) C (4) C (5) C (4) C (1) C (5) C (3) C (4) C (5) O (1) C (6) C (6) C (4) C (3) C (1) C (5) C (5) C (6) C (3) O (1) C (4) C (4) C (5) C (6) H (1) C (5) H (6) C (5) H (4) C (6) C (6) H (5) H (6) H (3) H (1) H (4) H (4) H (5) H (6) 6(2) 1.3(3) -177(1) -0.5(3) 178(1) -1.4(2) 0.3(3) 180(1) 177(1) 179(1) -173(2) -178(1) -2(2) 1(2) -2(2) The sign is positive if when looking from atom 2 to atom 3 a clockwise action of atom 1 would superimpose it on atom 4. Table 7 of S-5: Intermolecular Distances Atom Atom Distance Atom Atom Distance O(1) H(3) 2.73(2) O(3) H(4) 3.37(2) O(1) H(3) 2.74(2) O(3) H(4) 3.37(2) O(1) H(4) 3.00(2) O(3) C(4) 3.464(2) O(1) O(3) 3.215(2) N(1) H(4) 3.08(2) O(1) C(3) 3.309(2) N(1) C(4) 3.398(2) O(1) H(6) 3.31(2) N(1) C(5) 3.425(2) O(1) C(6) 3.382(2) N(1) H(4) 3.46(2) O(1) O(2) 3.411(2) N(1) C(4) 3.464(2) O(1) H(6) 3.44(2) N(1) C(5) 3.524(2) O(1) C(4) 3.466(2) N(1) H(5) 3.59(2) O(1) C(3) 3.501(2) C(1) H(3) 3.39(2) O(1) C(6) 3.545(2) C(1) H(3) 3.39(2) O(2) H(1) 2.75(3) C(1) C(1) 3.4023(6) O(2) H(4) 2.85(2) C(1) C(1) 3.4023(6) O(2) O(2) 2.869(3) C(1) C(6) 3.471(2) 24 O(2) H(5) 3.14(2) C(1) C(6) 3.487(2) O(2) H(5) 3.34(2) C(2) C(3) 3.484(2) O(2) H(5) 3.39(2) C(2) C(4) 3.504(2) O(2) C(5) 3.461(2) C(3) H(6) 3.35(2) O(2) C(5) 3.506(2) C(3) C(3) 3.3937(6) O(3) H(4) 2.57(2) C(3) C(3) 3.3937(6) O(3) H(5) 2.79(2) C(3) H(3) 3.43(2) O(3) H(6) 2.95(2) C(3) H(3) 3.52(2) O(3) H(1) 3.21(3) C(3) H(6) 3.54(2) O(3) C(4) 3.246(2) C(4) H(6) 3.39(2) O(3) C(5) 3.356(2) C(5) H(5) 3.31(2) Contacts out to 3.60 Å. Estimated standard deviations in the least significant figure are given in parentheses. Figure 2 of S-5: (Left) projection along the a-axis. (Right) Stereoscopic projection of the 2NP structure along the c-axis. The 2-NP single crystals were obtained from vapor crystallization. 25 Figure 3 of S-5: A schematic representation of the morphologies of the two crystalline poly-morphs of 2-NP crystal including their face-Miller indices: (Left) 2-NP crystals obtained by vaporization, (Right) 2-NP crystals grown from cyclohexane-benzene solution 16 (45% v/v, 55% v/v) at 25 °C. S-6: References: (1) B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl, Gromacs 4: Algorithm for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory and Computation. 4, 435-447 (2008). (2) D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, Gromacs 4: Fast, Flexible and Free. J. Comput. Chem. 20, 1701-1718 (2005). (3) W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rivers, Development and Testing of the OPLS All Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc., 118, 11225-11236 (1996). (4) M. L. P. Price, D. Ostrowsky, and W. L. J. Jorgensen. Gas-Phase and Liquid State Properties of Esters, Nitriles, and Nitro Compounds with OPLSS-AA Force Field. Comput. Chem. 22, 1340–1352 (2001). (5) (a) J. N. Canongia Lopes and A. A. Pádua. Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions. J. Phys. Chem. B, 108, 16893-16898 (2004); (b) J. N. Canongia Lopes and A. A. Pádua. Molecular Force Field for Ionic Liquids III: Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions. J. Phys. Chem. B. 110, 19586-19592 (2006). 26 (6) S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511-520 (1984). (7) S. Nosé, A molecular dynamics method for simulation in the canonical ensemble. Mol. Phys. 52, 255 -268 (1984). (8) W. G. Hoover. Canonical dynamics Equilibrium phase-space distribution. Phys. Rev. A. 31, 1695- 1716 (1985). (9) M. Parinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182-7190 (1981). (10) T. Darden, D. York, and L. Pedersen. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089-93 (1993). (11) U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577-93 (1995). (12) Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. (13) A. D. Becke. Density-functional thermochemistry III. The role of exact exchange. J. Chem. Phys. 98, 5648-5652 (1993). 27 (14) C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785-789 (1988) (15) C. Gatti, V. R. Saunders, and C. Roetti. Crystal field effects on the topological properties of the electron density in molecular crystals: The case of urea. J. Chem. Phys. 101, 10686-10696 (1994). (16) C. G. Vonk. The small-angle scattering of distorted lamellar structures. J. Appl. Cryst. 11, 541- 546 (1978). (18) (a) J. M. Schultz. The effect of adsorption in the small-angle scattering of X- rays from stacked lamellae. Acta Cryst. A 26, 93 – 97 (1970). (b) J. M. Schultz. Rapid small-angle and wide angle X-ray scattering studies of crystallization behaviour in polymers. J. Polym. Sci. Polym. Phys. Ed. 14, 2291 -2311 (1976). (19) J. M. Schultz, J. S. Lin, and R. W. Hendricks. A dynamic study of the crystallization of polyethylene from the melt. J. Appl. Cryst. 11, 541- 546 (1978). (20) V. Schomaker and K. N. Trueblood. On the Rigid Body Motion of Molecules in Crystals. Acta Cryst. B. 24, 63 -76 (1968). (21) K. B. Borisenko, C. W. Bock, and I. Hargittal. Intramolecular Hydrogen Bonding and Molecular Geometry of 2-Nitrophenol from a Joint Gas-Phase Electron Diffraction and ab Initio Molecular Orbital Investigation. J. Phys. Chem. 98, 1442-1448 (1994). (22) F. Iwasaki and Y. Kawano. The crystal and molecular structure of 2- nitrophenol. Acta Cryst. B, 38, 1286-1290 (1978). (23) J. Bernstein. Polymorphism in Molecular Crystals; Clarendon: Oxford, 2002. (24) (a) J. Bernstein, Crystal Growth, Polymorphism and structure-property relationships in organic crystals. J. Phys. D, 26, B 66 -76 (1993); (b) F. Wöhler and J. Liebig. Untersuchungen über das Radikal der Benzoesäure. Ann. Pharm. 1832, 3, 249-282 (1832); (c) H. Reichelt, C. A. Faunce, and H. H. Paradies. Elusive Forms and Structures of NHydroxyphthalimide: The Colorless and Yellow Crystal Forms of N-Hydroxyphthalimide. J. Phys. Chem. A. 111, 2587 – 2601 (2007). 28
© Copyright 2026 Paperzz