Principles of Ad Hoc Networking Michel Barbeau and Evangelos Kranakis February 10, 2009 Overall architecture of a SDR Bit stream Modulator ADC DAC Transmitter Digital Demodulator Bit stream Receiver Analog Digital 2 Complex signal Imaginary 1 Q(t) 0.5 m(t) φ(t) Real 0 I(t) −0.5 −1 −1 −0.5 0 0.5 1 3 Complex signal in 3D cos 2 π f t sin 2 π f t 30 25 Time 20 15 10 5 0 3 j2πft e 2 1 0 −1 −2 Imaginary −3 −3 −2 −1 0 1 2 3 Real 4 Equivalence of real and complex representations of signals Real domain cos(2πf t) sin(2πf t) Complex domain t) − j sin(2πf t)]) = ([cos(2πf t) + j sin(2πf t)] + [cos(2πf 1 ej2πf t + e−j2πf t 2 1 ([cos(2πf t) + j sin(2πf t)] − [cos(2πf t) − j sin(2πf t)]) = j2 j −j2πf t j2πf t e −e 2 1 2 5 Architecture of ADC Modulated radio signal LPF ADC Discrete-time sampled signal 6 Architecture of down conversion and ADC fc LPF Baseband or IF ADC Discrete-time sampled signal f lo 7 Frequencies involved in down conversion Frequency -f c+f lo 0 f c-f lo f lo -f c+f lo f lo fc 8 Architecture of quadrature mixing cos(2 PI f lo t) I(t) LPF fc I(n) ADC BPF fs Q(t) LPF ADC Q(n) sin(2 PI f lo t) analog digital 9 1 1 0.5 0.5 0 0 I(n) I(t) Flow of signals in quadrature mixing, with the assumption fc −flo Hertz −0.5 −0.5 −1 −1 0.5 1 t 1.5 2 2.5 1 1 0.5 0.5 Q(n) Q(t) 0 0 −0.5 −1 −1 0.5 1 t 1.5 2 2.5 0.5 1 0 0.5 1 n 1.5 2 2.5 1.5 2 2.5 0 −0.5 0 0 n 10 Digital to analog conversion cos (2 PI f c n) I( n) + DAC + BPF Q(n) sin(2 PI f c n) digital analog 11 Modulation schemes System Bluetooth 802.11 802.11b 802.11a 802.16 SC-25 802.16 SC-25 802.16 OFDM-7 Bandwidth 1 M Hz 1 M Hz 10 M Hz 10 M Hz 10 M Hz 16.6 M Hz 25 M Hz Modulation GFSK GFSK DBPSK DQPSK CCK OFDM QPSK Rate 1 M bps 1 and 2 M bps 1 M bps 2 M bps 11 M bps 54 M bps 40 M bps Transmission FH SS FH SS DS SS DS SS CCK OFDM SC 25 M Hz QAM-16 60 M bps SC 7 M Hz QAM-64 120 M bps OFDM 12 Two-level GFSK modulation Symbol 0 1 Frequency shift −160 kilo Hertz +160 kilo Hertz 13 Four-level GFSK modulation Symbol 00 01 10 11 Frequency shift −216 kilo Hertz −72 kilo Hertz +216 kilo Hertz +72 kilo Hertz 14 DBPSK modulation Symbol 0 1 Phase shift none 180 degress 15 DQPSK modulation Symbol 00 01 10 11 Phase shift none 90 degrees −90 degrees 180 degrees 16 Initialization of the SDR application Initialization: // index over i = 0 // index over j = 0 // true while first_round = capture buffer playback buffer in first round of playback buffer filling true 17 Event handler of the SDR application Event handling: process capture buffer[i] put result in playback buffer[j] if first_round and j = 3 then start playback first_round = false i = (i + 1) mod 2 j = (j + 1) mod 4 18 Algorithm of a software exponential modulator for i = 0 to length of playback buffer, minus one // determine value of symbol being transmitted symbol = output buffer[floor(i / s)] // determine the frequency shift shift = fo(symbol) // determine time n = i * 1/fs // Generate sample at position "i" playback buffer[i] = real part of exp(j*2*pi*(fc+shift)*n) 19 Exponential modulation of bits 1 0 1 0 2 1.5 Imaginary 1 0.5 0 −0.5 −1 −1.5 −2 2 1 0 −1 Real −2 0 50 100 150 200 250 300 Time 20 Algorithm of a software demodulator // Initialization prev_f = 0 prev_p = 0 count = 0 // Demodulation loop for i = 0 to length of capture buffer, minus one // Compute the instantaneous phase phase = atangent Quadrature(i) / InPhase(i) // Compute the instantaneous frequency freq = fs * ((phase - prev_p) / (2 * pi) ) // Detection of carrier if freq == (fc + fo(1)) or freq == (fc + fo(2)) if (count==0) // no bit is being demodulated, start demodulation count = 1 21 else if freq==prev_f // continue demodulation while frequency is constant count = count + 1 else count = 0 // determine if a full bit has been demodulated if count==s if freq==fc+fo(1) symbol = 0 else symbol = 1 count = 0 // save phase and frequency for the next loop instance prev_p = phase prev_f = freq end Application of the Barker sequence Data bits Transmitted sequence 0 10110111000 1 01001000111 0 10110111000 0 10110111000 22 Autocorrelation with Barker sequence 15 10 Autocorrelation 5 0 −5 −10 −15 0 5 10 15 20 25 30 Bit position of window start 35 40 45 23 Radiation pattern of an omi-directionnal antenna 24 Radiation pattern of a directional antenna 25 Maximum distance between antennas 150 Max distance in km 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 25 50 75 100 125 150 175 200 225 250 275 300 h (in meters) 26 Transmission performance parameters of 802.11, 802.16 and Bluetooth radios Radio Bluetooth Class 1 Bluetooth Class 2 Bluetooth Class 3 802.11 Frequency 2.4 - 2.4835 G Hz 2.4 - 2.4835 G Hz Power 20 dBm 4 dBm 0 dBm 20 dBm 802.11b 802.11a 802.16 SC-25 QPSK 802.16 SC-25 QAM-16 802.16 OFDM-7 2.4 - 2.4835 G Hz 5.15- 5.35 G Hz 10 - 66 G Hz 10 - 66 G Hz 2 - 11 G Hz 20 dBm 16 - 29 dBm ≥ 15 dBm ≥ 15 dBm 15 - 23 dBm 27 Reception performance parameters of 802.11, 802.16 and Bluetooth radios Radio Bluetooth Class 1 Bluetooth Class 2 Bluetooth Class 3 802.11 802.11b 802.11a 802.16 SC-25 QPSK 802.16 SC-25 QPSK 802.16 SC-25 QAM-16 802.16 SC-25 QAM-16 802.16 OFDM-7 Rate 1 M bps 1 M bps 1 M bps 1 M bps 2 M bps 11 M bps 54 M bps 40 M bps 40 M bps 60 M bps 60 M bps 120 M bps Error 10−3 (BER) 10−3 (BER) 10−3 (BER) 3% (FER) 3% (FER) 8% (FER) 10% (PER) 10−3 (BER) 10−6 (BER) 10−3 (BER) 10−6 (BER) 10−6 (BER) Sensitivity −70 dBm −70 dBm −70 dBm −80 dBm −75 dBm −83 dBm −65 dBm −80 dBm −76 dBm −73 dBm −67 dBm −78 - −70 dBm 28 Cable attenuation per 100 feet Type Belden 9913 LMR 600 Frequency 0.4 Giga Hertz 2.5 Giga Hertz 4 Giga Hertz 0.4 Giga Hertz 2.5 Giga Hertz 4 Giga Hertz 5 Giga Hertz Attenuation 2.6 dB 7.3 dB 9.5 dB 1.6 dB 4.4 dB 5.8 dB 6.6 dB 29 Comparison of attenuation of a 1 MHz signal over a wireless medium and a Category 5 cable 40 Wireless medium Category 5 UTP loss (in dB) 30 20 10 0 100 200 300 400 500 600 700 800 900 1000 distance (in meters) 30 Comparison of attenuation of 802.11a and 802.11b 110 802.11b 802.11a 105 100 Free space loss (in dB) 95 90 85 80 75 70 65 60 0 100 200 300 400 500 600 Distance (in meters) 700 800 900 1000 31 Typical BERs as a function of the medium type Medium Wireless Copper Fiber BER 10−6 to 10−3 10−7 to 10−6 10−14 to 10−12 32 Parameters of an UWB system Bandwidth Frequency range Data rate Range Transmission power 500 M Hz 3.1 G Hz to 10.6 G Hz 100 M bps to 500 M bps 10 meters 1 mW 33 Shape of modulated UWB pulses Modulation Amplitude Bipolar Position 1 Full Positive Non delayed 0 Half Inverted Delayed 34 UWB modulation 1 0 (a) (b) (c) (d) 35 Energy consumption State Idle Receive Transmit Sleep Consumption (mW) 890 1020 1400 70 36
© Copyright 2026 Paperzz