Finding Roots of Polynomials

Finding Roots of Polynomials
Warm Up- CALCULATOR INACTIVE!
Sketch the following….
A
A cubic function with a
negative zero of multiplicity 2
and a positive zero
C
A cubic function with no real
zeroes
B
A quartic function with a
negative leading coefficient, a
positive y intercept, one
negative double root, one
positive zero, and one zero at
the origin.
D
A quartic function with no real
zeroes, a positive leading
coefficient, and a positive y
intercept
Finding From an Equation
Factor Theorem:
𝑓(𝑐) = 0 iff π‘₯ βˆ’ 𝑐 is a factor of the polynomials
Thus, c is a root of the polynomial
Find all roots of the following polynomials:
1) 𝑓 π‘₯ = (π‘₯ βˆ’ 2)(π‘₯ + 1)
3) 𝑓 π‘₯ = π‘₯ ! + 19π‘₯ + 34
2) 𝑓 π‘₯ = π‘₯ βˆ’ 3 ! (2π‘₯ βˆ’ 1)(π‘₯ + 2)
4) 𝑓 π‘₯ = π‘₯ ! + 2π‘₯ ! + π‘₯
β€œFancy Factoring”
By examining the form of the following polynomial, solve by factoring:
π‘₯ ! + 7π‘₯ ! = 19
1. π‘₯ ! βˆ’ 10π‘₯ ! = βˆ’9
2. π‘₯ ! βˆ’ 8π‘₯ ! = βˆ’16
3. π‘₯ ! βˆ’ 12π‘₯ ! = 64
4. π‘₯ ! βˆ’ 16 = 0
Write a polynomial with given zeroes:
5, 3i
Finding Roots using Polynomial Division
Function
Rational
Roots
πŸ‘
𝟐
𝒇 𝒙 = 𝒙 βˆ’ πŸ“π’™ + πŸ“π’™ βˆ’ πŸ’
βˆ’ 3, 2
Find Other Roots
𝑓 π‘₯ = π‘₯ ! + 2π‘₯ ! βˆ’ 4π‘₯ ! βˆ’ 7π‘₯ βˆ’ 2
𝑓 π‘₯ = π‘₯ ! βˆ’ 27
Pairs Task:
Given the polynomial y = -2(x + 1)2(x – 2)(x – 3)3(x2 + 2) determine the following without graphing.
a) Determine the quadrants where the graph originates/terminates.
b) Determine the zeros of the function.
c) Determine the x-intercepts of the function.
d) Determine the y-intercept of the function.
e) Describe the behavior of the graph at each of the x-intercepts.
f) Without using the technology, sketch the graph of the function
Homework!
1. 𝑓 π‘₯ = π‘₯ ! + 2π‘₯ ! βˆ’ 5π‘₯ βˆ’ 10
2. 𝑓 π‘₯ = π‘₯ ! + 3π‘₯ ! + π‘₯ ! βˆ’ 12π‘₯ βˆ’ 20
3. 𝑓 π‘₯ = 2π‘₯ ! + 3π‘₯ ! + 18π‘₯ + 27
4. 𝑓 π‘₯ = π‘₯ ! + 64
5. 𝑓 π‘₯ = π‘₯ ! + 4π‘₯ ! + 7π‘₯ + 28
6. 𝑓 π‘₯ = 2π‘₯ ! + π‘₯ ! + 1