4. Chapter 12, Math 095 Disclaimer: This file is a compilation of problems created by Math 095 instructors at WWCC. These problems are meant only to give students extra practice in preparation for exams or for understanding a particular topic. We do not promise that the problems below are problems that will appear on your exam in Math 095. 1. Given f HxL = 3 è!!!!!!!! !! x + 2 , find f -1 HxL. Simplify each expression. HaL HbL 3 è!!!!!!!! !! x+2 3 è!!!!!!!! !! y= x+2 è!!!!!!!! 3 !! x= y+2 è!!!!!!!!!! 3 ! 3 3 x =I y+2M f HxL = log2 32 log2 32 = log2 25 = 5 log2 2 = 5ÿ1 log16 ÅÅÅÅ18 log16 ÅÅÅÅ18 = x ÅÅÅÅ18 1 ÅÅÅÅ ÅÅ 23 2-3 f -1 HxL = x3 - 2 log16 ÅÅÅÅ18 = - ÅÅÅÅ34 5. 52 x Solve for x. log3 x = 2 log3 x = 2 = 125 32 = x 9=x 52 x = 53 2x=3 x = ÅÅÅÅ32 3. Sketch the graph of the function. f HxL = 2 + 4 6. Solve for x. log x 81 = 4 log x 81 = 4 x x y -2 1 17 2-2 + 4 = ÅÅÅ Å + 4 = ÅÅÅÅÅ Å 4 4 -1 1 9 2-1 + 4 = ÅÅÅ Å + 4 = ÅÅÅ Å 2 2 0 20 + 4 = 1 + 4 = 5 1 21 2 22 + 4 = 4 + 4 = 8 x 24 x - ÅÅÅÅ34 = x y = x3 - 2 Solve for x. 52 x = 125 = H24 L = -3 = 4 x x3 = y + 2 x3 - 2 = y 2. = 16x x4 = 81 4 è!!!!! 4 è!!!!! ! x4 = 81 x=!3 We don't have logarithms with negative bases so the solution is: x = 3 7. +4 = 2+4 = 6 Write the expression as a single logarithm. 2 log3 x - 4 log3 Hx + 1L + log3 Hx - 2L 2 log3 x - 4 log3 Hx + 1L + log3 Hx - 2L = log3 x2 - log3 Hx + 1L4 + log3 Hx - 2L x = log3 ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ + log3 Hx - 2L Hx+1L4 2 x = log3 A ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ ÿ Hx - 2LE Hx+1L4 8 2 6 -3 -2 -1 8. Solve for x. 63 x = 5 4 63 x = 5 2 ln 63 x = ln 5 3 x ln 6 = ln 5 1 2 3 ln 5 x = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ 3 ln 6 x º 0.299415 Check: log2 è!!! x= 8: è!!! è!!! 8 + log2 I2 8 M - 3 = 1 ? log2 H23ê2 L + log2 H25ê2 L - 3 = 1 ? 9. ÅÅÅÅ32 + ÅÅÅÅ52 - 3 = 1 ? è!!! è!!! x = - 8 : log2 I- 8 M is undefined è!!! Solution : x = 8 Solve for x. 3 ÿ 4 x+5 - 1 = 1 3 ÿ 4 x+5 - 1 = 1 3 ÿ 4 x+5 = 2 4 - 3 = 1 ? Yes 12. Find the value of the following logarithmic expressions. HaL 4 x+5 = ÅÅÅÅ23 log5 H100L - log5 20 ln 4 x+5 = ln ÅÅÅÅ23 Hx + 5L ln 4 = ln ÅÅÅÅ23 100 log5 H100L - log5 20 = log5 H ÅÅÅÅ ÅÅÅÅÅ L 20 = log5 5 x ln 4 + 5 ln 4 = ln ÅÅÅÅ23 HbL x ln 4 = ln ÅÅÅÅ23 - 5 ln 4 =1 log3 27 ln ÅÅ2ÅÅ -5 ln 4 log3 27 = log3 33 =3 3 x = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ ln 4 10. HcL Solve for x. logH5 xL - logHx + 1L = 4 logH5 xL - logHx + 1L = 4 5x logH ÅÅÅÅ ÅÅÅÅÅÅ L x+1 5x ÅÅÅÅ ÅÅÅÅÅ x+1 5x ÅÅÅÅ ÅÅÅÅÅ x+1 =4 1 log2 ÅÅÅÅ = log2 2-3 8 4 = 10 HdL = 10000 5 x = 10000 Hx + 1L 5 x = 10000 x + 10000 -9995 x = 10000 10000 x = - ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ 9995 10000 Check: logH5 H- ÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ LL is undefined. This means there is no solution 9995 11. log2 ÅÅÅÅ18 Solve for x. log2 x + log2 H2 xL - 3 = 1 log2 x + log2 H2 xL - 3 = 1 log2 x + log2 H2 xL = 4 log2 Hx ÿ 2 xL = 4 ln 13. Write 641ê3 = 4 in logarithmic form. 641ê3 = 4 log64 4 = ÅÅÅÅ13 x 14. Find f -1 HxL if f HxL = ÅÅÅÅ - 5. Use f -1 HxL notation. 2 x f HxL = ÅÅÅÅ -5 2 y = ÅÅÅÅ2x - 5 x = ÅÅÅÅ2y - 5 2 x2 = 2 4 x + 5 = ÅÅÅÅ2y 2 Hx + 5L = y y = 2 Hx + 5L 2 x2 = 16 è!!! x=! 8 x2 = 8 è!!! x= 8: è!!! è!!! log2 8 + log2 I2 8 M - 3 = 1 ? log2 H23ê2 L + log2 H25ê2 L - 3 = 1 ? è!!! è!!! x = - 8 : log2 I- 8 M is undefined è!!! Solution : x = 8 ÅÅÅÅ32 + ÅÅÅÅ52 - 3 = 1 ? 4 - 3 = 1 ? Yes 3 è!!! ‰ = ln ‰1ê3 = ÅÅÅÅ13 log2 H2 x2 L = 4 Check: = -3 3 è!!! ln ‰ f -1 HxL = 2 x + 10 15. Solve for x. Give the exact value and approximate correct to four decimal places. HaL 53 x = 5x+1 53 x = 5 x+1 3x= x+1 2x=1 x = ÅÅÅÅ12 = 0.5 HbL log5 Hx + 1L = 3 HbL log5 Hx + 1L = 3 4 53 = x + 1 125 = x + 1 124 = x HcL gHxL = log2 x 2 -4 -2 2 6x = 2 6x = 2 ln 6 x = ln 2 x ln 6 = ln 2 ln 2 x = ÅÅÅÅÅÅÅÅÅ º 0.3869 ln 6 HdL -4 17. Given the of f HxL below, plot f -1 HxL on the same axes. 4 3 log2 x = 6 2 3 log2 x = 6 log2 x = 2 -4 -2 22 = x x=4 HeL 4 -2 log6 x + log6 Hx - 5L = 1 4 -4 log6 x + log6 Hx - 5L = 1 log6 HxHx - 5LL = 1 log6 2 -2 Hx2 4 - 5 xL = 1 2 61 = x 2 - 5 x 0 = x2 - 5 x - 6 0 = Hx - 6L Hx + 1L x = 6 or x = -1 Hno negative input in logL -4 -2 2 4 -2 x=6 -4 18. 16. Graph the following functions. HaL f HxL = 2 x $4000 is invested in an account earning 3% interest compounded monthly. HaL 2 -2 2 -2 -4 A = PH1 + ÅÅÅÅnr Ln t 0.03 A = 4000 H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 4 -4 Find the amount in the account after 6 years, correct to the nearest penny. 4 HbL 12 H6L A = $4787 .79 How long will it take for the account to reach $5000? A = PH1 + ÅÅÅÅnr Ln t 0.03 5000 = 4000 H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 5000 0.03 ÅÅÅÅÅÅÅÅ ÅÅÅÅ = H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 4000 12 0.03 ÅÅÅÅ54 = H1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 lnH ÅÅÅÅ54 L lnH ÅÅÅÅ54 L = = t= 19. x+5 Find f -1 HxL, f HxL = ÅÅÅÅ ÅÅÅÅÅÅ x-3 4 2 12 t 12 t -4 0.03 12 t lnH1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 0.03 12 t lnH1 + ÅÅÅÅ ÅÅÅÅÅÅ L 12 lnH5ê4L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ º 7.45 years 12 lnH1+0.03ê12L so it will take 7 years, 6 months 22. Solve: log2 H3 x - 2L - 5 = 3 f HxL = 1 9 x = ÅÅÅÅ ÅÅ 27 1 9x = ÅÅÅÅ ÅÅ 27 1 = ÅÅÅÅ ÅÅ 33 3 = 3-3 2 x = -3 2x HbL x = - ÅÅÅÅ32 log3 x = 4 log3 x = 4 x = 34 x = 81 23. Solve. Write the exact solution and an approximation to the solution accurate to four decimal places. 33 x-5 = 7 3 x - 2 = 28 3 x - 2 = 256 3 x = 258 33 x-5 = 7 ln 33 x-5 = ln 7 H3 x - 5L ln 3 = ln 7 3 x ln 3 - 5 ln 3 = ln 7 3 x ln 3 = ln 7 + 5 ln 3 258 x = ÅÅÅÅ ÅÅÅÅÅ 3 x = 86 21. g. 4 x H32 L 3 x+5 ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ x-1 log2 H3 x - 2L - 5 = 3 log2 H3 x - 2L = 8 2 Find x. Be sure to show your work. HaL y+5 ÅÅÅÅ ÅÅÅÅÅ y-3 3 x+5 y = ÅÅÅÅÅÅÅÅ ÅÅÅÅÅ x-1 20. -2 -4 xHy - 3L = y + 5 xy-3x = y+5 xy-y=3x+5 yHx - 1L = 3 x + 5 -1 gHxL -2 x+5 f HxL = ÅÅÅÅ ÅÅÅÅÅÅ x-3 x= fHxL 12 t Graph: f HxL = 3 x and gHxL = log3 x below. Be sure to make it clear which graph is f and which graph is ln 7+5 ln 3 x = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅ 3 ln 3 x = 2.25708 24. Write as one logarithm and then simplify: 2 log16 6 - 2 H2 log16 2 + log16 3L 2 log16 6 - 2 H2 log16 2 + log16 3L = 2 log16 6 - 2 Hlog16 22 + log16 3L = 2 log16 6 - 2 log16 H22 ÿ 3L = 2 log16 6 - log16 H22 ÿ 3L 2 = 2 log16 6 - log16 144 = log16 62 - log16 144 36 = log16 ÅÅÅÅ ÅÅÅÅÅ 144 = log16 ÅÅÅÅ14 = log16 16-1ê2 = -1 ê 2 25. Write as a sum, difference, x +3 x-10 log8 J ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ N 3 è!!!!!!!!! and/or multiple of logarithms 2 x-1 x +3 x-10 log8 J ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ N = log8 Hx2 + 3 x - 10L - log6 3 è!!!!!!!!! 2 x-1 3 è!!!!!!!! !! x-1 = log8 @Hx - 2L Hx + 5LD - ÅÅÅÅ13 log6 Hx - 1L 1 = log8 Hx - 2L + log8 Hx + 5L - ÅÅÅÅ log6 Hx - 1L 3 26. Solve. log3 Hx + 2L + log3 Hx + 3L - log3 Hx - 6L = 1 log3 Hx + 2L + log3 Hx + 3L - log3 Hx - 6L = 1 log3 @Hx + 2L Hx + 3LD - log3 Hx - 6L = 1 Hx+2L Hx+3L log3 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ = 1 x-6 Hx+2L Hx+3L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ = 31 x-6 Hx + 2L Hx + 3L = 3 Hx - 6L x2 + 5 x + 6 = 3 x - 18 x2 + 2 x + 24 = 0 è!!!!!!!!!!!!!!!! !!!!!!!!!!! 2 -2! 2 -4 H1L H24L x = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ 2 H1L è!!!!!!!!! -2! -92 x = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅ 2 No Solution HimaginaryL 27. Given logb 2 = 0.431, logb 3 = 0.683, and logb 11 = 1.490, find: HaL HbL logb 396 logb 396 = logb H22 ÿ 32 ÿ 11L = logb 22 + logb 32 + logb 11 = 2 logb 2 + 2 logb 3 + logb 11 = 2 H0.431L + 2 H0.683L + H1.490L = 3.718 18 logb ÅÅÅÅ ÅÅ 11 18 logb ÅÅÅÅ ÅÅ = logb 18 - logb 11 11 = logb 2 ÿ 32 - logb 11 = logb 2 + logb 32 - logb 11 = logb 2 + 2 logb 3 - logb 11 = H0.431L + 2 H0.683L - H1.490L = 0.307
© Copyright 2026 Paperzz