Chapter 16 Semilocal Approximations for the Kinetic Energy Fabien Tran1 and Tomasz A. Wesolowski2 1 Institute of Materials Chemistry, Vienna University of Technology Getreidemarkt 9/165-TC, A-1060 Vienna, Austria [email protected] 2 Department of Physical Chemistry, University of Geneva 30, quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland [email protected] Approximations to the non-interacting kinetic energy Ts [ρ], which take the form of semilocal analytic expressions are collected. They are grouped according to the quantities on which they explicitly depend. Additionally, the approximations for quantities related to Ts [ρ] (kinetic potential and non-additive kinetic energy), for which the analytic expressions for the “parent” approximation for the functional Ts [ρ] are unknown, are also given. Contents 16.1 Notation and conventions . . . . . . . . . . . 16.2 Known exact functionals . . . . . . . . . . . . 16.3 Local density approximation — LDA . . . . . 16.4 Gradient expansion approximation — GEAn 16.5 Generalized gradient approximation — GGA 16.6 Other semilocal approximations . . . . . . . . 16.7 N - and r-dependent approximations . . . . . 16.8 Miscellaneous . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 430 430 431 432 437 439 440 441 16.1. Notation and conventions Atomic units [me = e = = 1/(4πε0 ) = 1] are used in all formulas. The notation for functions and constants that will be used throughout the text is the following: • ρ = ρ(r) – the electron density. 1/3 4/3 • s = |∇ρ| / 2 3π 2 ρ – the dimensionless reduced density gradient. • x = (5/27) s2 – a quantity proportional to the square of s. 2/3 2.8712 – the Thomas-Fermi constant. • CF = (3/10) 3π 2 429 F. Tran & T. A. Wesolowski 430 1/3 • b = 2 6π 2 – a conversion factor. • Capital T – integrated kinetic energy. • Small t – kinetic-energy density per volume unit. The analytic expressions of the non-interacting kinetic-energy functionals Ts [ρ] will be given for the spin-compensated case (ρ↑ = ρ↓ ). For spin-polarized electron densities, the corresponding expression for Ts [ρ↑ , ρ↓ ] can be easily obtained by applying the extension formula of Oliver and Perdew:1 1 (Ts [2ρ↑ ] + Ts [2ρ↓ ]) 2 Ts [ρ↑ , ρ↓ ] = (16.1.1) The labels used for the approximations reflect the name given by the authors, the most common convention used in the literature, or the names of the authors. 16.2. Known exact functionals For two types of systems, the exact analytic form of Ts [ρ] is known: • Thomas and Fermi:2,3 TsTF [ρ] ρ5/3 (r)d3 r = CF (16.2.2) The Thomas-Fermi functional2,3 is exact for the homogeneous electron gas. Applying it for inhomogeneous systems leads to an approximation known as the Thomas-Fermi functional or the local density approximation (LDA) functional. • von Weizsäcker:4 TsW [ρ] 1 = 8 2 |∇ρ(r)| 3 d r ρ(r) (16.2.3) This functional is exact for one-electron and spin-compensated two-electron systems. Applying it for other systems leads to an approximation known as the von Weizsäcker functional. 16.3. Local density approximation — LDA The label LDA is sometimes used in a more general way for any approximation which depends solely on the electron density like the TF functional [Eq. (16.2.2)]. In addition to TF, a few such functionals were proposed in the literature. GaussianLDA Lee and Parr:5 TsGaussianLDA [ρ] 3π = 5/3 2 ρ5/3 (r)d3 r (16.3.4) Semilocal Approximations for the Kinetic Energy 431 Note that the coefficient 3π/25/3 2.9686 is about 3% larger than the coefficient CF of the TF functional [Eq. (16.2.2)]. Fuentealba and Reyes:6 ⎡ ⎛ 1/3 ρ(r) ⎢ ⎜ TsZLP [ρ] = c1 ρ5/3 (r) ⎣1 − c2 ln ⎝1 + 2 ZLP ⎞⎤ c2 1 ρ(r) 2 ⎟⎥ 3 1/3 ⎠⎦ d r (16.3.5) where c1 = 3.2372 and c2 = 0.00196. It was constructed following the “conjointness conjecture”7 applied to the ZLP8 approximation for the exchange-correlation energy. Note that in Eq. (9) in Ref. 6 the symbol ρ should be replaced by ρσ for the given coefficients. For the numerical verification see Ref. 9. LP97 Liu and Parr:10 TsLP97 [ρ] = 3.26422 ρ 5/3 (r)d r − 0.02631 3 +0.000498 2 ρ 4/3 3 (r)d r 3 ρ 11/9 3 (r)d r (16.3.6) Note that the coefficient in front of the third term was given incorrectly in Ref. 10. 16.4. Gradient expansion approximation — GEAn The gradient expansion approximation (GEA) until the nth order: n n GEAn Ts ti (ρ(r), ∇ρ(r), . . .) d3 r [ρ] = Ts,i [ρ] = i=0 (16.4.7) i=0 where only the terms for i even are non-zero. The analytical form of the terms up to i = 6 have been derived: t0 = tTF = CF ρ5/3 (16.4.8) 2 1 W 1 |∇ρ| t = (16.4.9) 9 72 ρ 2 2 4 ∇2 ρ (3π 2 )−2/3 1/3 9 ∇2 ρ |∇ρ| 1 |∇ρ| (16.4.10) − + ρ t4 = 540 ρ 8 ρ ρ2 3 ρ4 2 −4/3 3 2 ∇ ∇2 ρ 2 3π 2575 ∇2 ρ 249 |∇ρ| ∇4 ρ −1/3 t6 = 13 + + ρ 45360 ρ2 144 ρ 16 ρ2 ρ 2 2 2 2 1499 |∇ρ| ∇ ρ 1307 |∇ρ| ∇ρ · ∇ ∇2 ρ + − 18 ρ2 ρ 36 ρ2 ρ2 2 4 6 343 ∇ρ · ∇∇ρ 8341 ∇2 ρ |∇ρ| 1600495 |∇ρ| (16.4.11) + + − 18 ρ2 72 ρ ρ4 2592 ρ6 t2 = F. Tran & T. A. Wesolowski 432 These terms were obtained by various authors: t0 by Thomas and Fermi,2,3 t2 by Kompaneets and Pavlovskii11 and by Kirzhnits,12 t4 by Hodges,13 and t6 by Murphy.14 t2 and t4 were obtained after integration by part of 15,16 2 1 |∇ρ| 1 (16.4.12) + ∇2 ρ 72 ρ 6 ⎛ 2 2 2 2 2 |∇ρ| 2 −2/3 4 ∇ ∇ρ · ∇ ∇ ρ (3π ) ∇ ρ ∇ ρ tJ4 = − 14 −7 ρ1/3 ⎝12 − 30 2 4320 ρ ρ ρ ρ2 ⎞ 2 2 2 4 ∇ρ · ∇ |∇ρ| 140 |∇ρ| ∇ ρ 92 |∇ρ| + + − 48 4 ⎠ (16.4.13) 3 3 3 ρ 3 ρ ρ tJ2 = respectively. Choosing n = 0, 2, and 4 in Eq. (16.4.7) leads to approximations with the following labels: GEA0 which is just the TF functional [Eq. (16.2.2)], GEA2 which is also denoted with TF 19 W, and GEA4. 16.5. Generalized gradient approximation — GGA The general form of GGA functionals reads GGA 3 [ρ] = f (ρ(r), |∇ρ(r)|) d r = CF ρ5/3 (r)F (s(r))d3 r Ts (16.5.14) where F (s) is the so-called enhancement factor. The enhancement factor of the von Weizsäcker functional [Eq. (16.2.3)] is given by 5 2 (16.5.15) s 3 while for the GEA truncated at the 0th and 2nd orders [Eqs. (16.4.7)-(16.4.9)], the enhancement factors are F W (s) = F GEA0 (s) = 1 F GEA2 (s) = 1 + 5 2 s 27 (16.5.16) (16.5.17) respectively. A large group of approximations in the GGA family were constructed following the “conjointness conjecture” of Lee, Lee, and Parr7 according to which the enhancement factor of an exchange GGA functional can be used (with possible reoptimization of the free coefficients) for the kinetic energy. The following convention is used for labeling the conjoint functionals: if not only the analytic form but also the free coefficients are the same as in the exchange functional, then the functional is called conjoint X, where X stands for the name of the “parent” exchange functional. In the case of reoptimization of the coefficients, the standard convention applies (see Sec. 16.1). Semilocal Approximations for the Kinetic Energy TFλW 433 The functionals in this family differ only in the value of the constant λ: TsTFλW [ρ] = TsTF [ρ] + λTsW [ρ] (16.5.18) GEA0 and GEA2 correspond to λ = 0 and 1/9, respectively. Other values of λ were proposed in the literature, e.g., λ = 1.290/9 (modified 2nd order gradient expansion proposed by Lee et al.17 ). See Ref. 18 for a compilation of the different values of λ proposed in the literature. The enhancement factor of the TFλW functional is P82 5 F TFλW (s) = 1 + λ s2 3 (16.5.19) 5 s2 27 1 + s6 (16.5.20) Pearson:19 F P82 (s) = 1 + DKPadé DePristo and Kress:20 F DKPadé (x) = LLP 1 + 0.95x + 14.28111x2 − 19.57962x3 + 26.64765x4 1 − 0.05x + 9.99802x2 + 2.96085x3 (16.5.21) Lee, Lee, and Parr:7 F LLP (s) = 1 + 0.0044188b2s2 1 + 0.0253bs arcsinh(bs) (16.5.22) This is the enhancement factor of the exchange functional B88 of Becke21 refitted for the kinetic energy. OL1 and OL2 Ou-Yang and Levy:22 5 2 20 2 −1/3 s s + 0.00677 3π 27 3 (16.5.23) 2 1/3 2 3π s 5 0.0887 F OL2 (s) = 1 + s2 + 1/3 27 CF 1 + 8 (3π 2 ) s (16.5.24) F OL1 (s) = 1 + The coefficients in front of the third terms in OL1 and OL2 were inverted in the original paper of Ou-Yang and Levy (caption of Table I in Ref. 22). The correctness of the coefficients given here was confirmed by numerical values of Ts [ρ] .23–25 The correct scaling properties of Ts [ρ] require that the coefficient in front of the last terms in OL1 and OL2 are not free but must be non-negative. P92 Perdew:26 F P92 (s) = 1 + 88.396s2 + 16.3683s4 1 + 88.2108s2 (16.5.25) F. Tran & T. A. Wesolowski 434 T92 Thakkar:23 F T92 (s) = 1 + LC94 0.0055b2s2 0.072bs − 1 + 0.0253bs arcsinh(bs) 1 + 25/3 bs (16.5.26) Lembarki and Chermette:27 F LC94 (s) = 2 1 + 0.093907s arcsinh(76.32s) + 0.26608 − 0.0809615e−100s s2 1 + 0.093907s arcsinh(76.32s) + 0.57767 · 10−4 s4 (16.5.27) This is the enhancement factor of the exchange functional PW91 of Perdew and Wang28 refitted for the kinetic energy. FR95A Fuentealba and Reyes:6 F FR95A (s) = 1 + 0.004596b2s2 1 + 0.02774bs arcsinh(bs) (16.5.28) This is the enhancement factor of the exchange functional B88 of Becke21 refitted for the kinetic energy. FR95B Fuentealba and Reyes:6 1/15 F FR95B (s) = 1 + 2.208s2 + 9.27s4 + 0.2s6 (16.5.29) This is the enhancement factor of the exchange functional PW86 of Perdew and Wang29 refitted for the kinetic energy. Vitos, Skriver, and Kollár:30 VSK98 F VJKS00 1 + 0.95x + 3.564x3 (x) = 1 − 0.05x + 0.396x2 (16.5.30) 1 + 0.8944s2 − 0.0431s6 (s) = 1 + 0.6511s2 + 0.0431s4 (16.5.31) VSK98 Vitos et al.:31 F VJKS00 E00 Ernzerhof:32 F TW02 E00 135 + 28s2 + 5s4 (s) = 135 + 3s2 (16.5.32) Tran and Wesolowski:25 F TW02 (s) = 1 + κ − κ 1 + μκ s2 (16.5.33) Semilocal Approximations for the Kinetic Energy 435 where κ = 0.8438 and μ = 0.2319. This is the enhancement factor of the exchange functional PBE of Perdew, Burke, and Ernzerhof 33,34 refitted for the kinetic energy. PBEn Karasiev, Trickey, and Harris:35 F PBEn (s) = 1 + n−1 i=1 (n) Ci s2 1 + a(n) s2 i (16.5.34) This is the enhancement factor of the exchange functional mPBE of Adamo and Barone36 refitted for the kinetic energy. Three approximations (n = 2, 3, and 4) of (n) the above general form were considered in Ref. 35. The coefficients Ci and a(n) are given in Table 16.1. Table 16.1. Coefficients of the enhancement factor of PBEn [Eq. (16.5.34)]. Functional PBE2 PBE3 PBE4 exp4 (n) C1 2.0309 −3.7425 −7.2333 (n) C2 50.258 61.645 (n) C3 −93.683 a(n) 0.2942 4.1355 1.7107 Karasiev, Trickey, and Harris:35 2 4 F exp4 (s) = C1 1 − e−a1 s + C2 1 − e−a2 s (16.5.35) where C1 = 0.8524, C2 = 1.2264, a1 = 199.81, and a2 = 4.3476. CR Constantin and Ruzsinszky:37 2 5 1 + a1 + 27 s + a2 s4 + a3 s6 − a4 s8 CR F (s) = 3 1 + a1 s2 + a5 s4 + 40β−5 a4 s6 (16.5.36) Three approximations (corresponding to β = 1/5, 1/6, and 0.185) of the above general form were considered in Ref. 37. The corresponding sets of coefficients ai are given in Table 16.2. Table 16.2. Coefficients of the enhancement factor of CR [Eq. (16.5.36)]. β 1/5 1/6 0.185 a1 a2 a3 a4 a5 1.122609 0.900085 −0.227373 0.014177 0.731298 1.301786 3.715282 0.343244 0.032663 2.393929 1.293576 2.161116 −0.144896 0.025505 1.444659 F. Tran & T. A. Wesolowski 436 MGE2 Constantin et al.:38 F MGE2 (s) = 1 + κ − κ 1 + μκ s2 (16.5.37) where κ = 0.804 and μ = 0.23889. This is the enhancement factor of the exchange functional PBE of Perdew, Burke, and Ernzerhof.33,34 Conjoint B86A Lacks and Gordon:39 F B86A (s) = 1 + 0.00387 b 2 s2 1 + 0.004b2s2 (16.5.38) This is the enhancement factor of the exchange functional B86A of Becke.40 Conjoint PW86 Lacks and Gordon:39 1/15 F PW86 (s) = 1 + 1.296s2 + 14s4 + 0.2s6 (16.5.39) This is the enhancement factor of the PW86 exchange functional of Perdew and Wang.29 Conjoint B86B Lacks and Gordon:39 F B86B (s) = 1 + 0.00403 b 2 s2 4/5 (1 + 0.007b2s2 ) (16.5.40) This is the enhancement factor of the exchange functional B86B of Becke.41 Conjoint DK87 Lacks and Gordon:39 F DK87 1 + 0.861504bs 7b2 s2 (s) = 1 + . 4 1/3 324(36π ) 1 + 0.044286b2s2 (16.5.41) This is the enhancement factor of the exchange functional DK87 of DePristo and Kress.42 Conjoint B88 Tran and Wesolowski:25 F B88 (s) = 1 + 1/3 where Cx = (3/4) (3/π) tional B88 of Becke.21 0.0042 b 2 s2 21/3 Cx 1 + 0.0252bs arcsinh(bs) (16.5.42) . This is the enhancement factor of the exchange func- Conjoint PW91 Lacks and Gordon:39 F PW91 (s) = −100s2 1 + 0.19645s arcsinh(7.7956s) + 0.2743 − 0.1508e s2 1 + 0.19645s arcsinh(7.7956s) + 0.004s4 (16.5.43) Semilocal Approximations for the Kinetic Energy 437 This is the enhancement factor of the exchange functional PW91 of Perdew and Wang.28 Conjoint xFit Lacks and Gordon:39 1 10−8 + 0.1234 2 xFit s + 29.790s4 + 22.417s6 F (s) = 1 + 1 + 10−8 s2 0.024974 0.024974 +12.119s8 + 1570.1s10 + 55.944s12 (16.5.44) This is the enhancement factor of the exchange functional xFit of Lacks and Gordon.43 Conjoint PBE Perdew et al.:44 F PBE (s) = 1 + κ − κ 1 + μκ s2 (16.5.45) where κ = 0.804 and μ = 0.21951. This is the enhancement factor of the exchange functional PBE of Perdew, Burke, and Ernzerhof.33,34 16.6. Other semilocal approximations TB78 Tal and Bader:45 TsTB78 [ρ] = TsTF [ρs ] + TsW [ρs ] + M TsW [ρr,A ] (16.6.46) A=1 where ρr,A (r) = ρ(RA )e−2ZA |r−RA | (16.6.47) and ρs (r) = ρ(r) − M ρr,A (r) (16.6.48) A=1 M , RA , and ZA are the number, positions, and charges of the nuclei, respectively. CN84 Cummins and Nordholm:46 TsCN84 [ρ] = tCN84 (r)d3 r (16.6.49) where tCN84 (r) = max tTF (r), tW (r) (16.6.50) F. Tran & T. A. Wesolowski 438 PG85 Pearson and Gordon:47 TsPG85 [ρ] where t PG85 n−1 = tPG85 (r)d3 r (16.6.51) if t2 (r) t0 (r) if t2 (r) > t0 (r) (16.6.52) 1 1 TsmGEA4 [ρ] = TsTF [ρ] + TsW [ρ] + Ts,4 [ρ] 9 2 (16.6.53) i=0 (r) = t0 (r) t2i (r) + 12 t2n (r) mGEA4 Allan et al.:48 PP88 Plindov and Pogrebnya:49 TsPP88 [ρ] = TsTF [ρ] 1 + TsW [ρ] + 9 t4 (r) 1+ 1 t4 (r) 8 t2 (r) d3 r MGGA Perdew and Constantin:50 F MGGA = F W + F GE4−M − F W fab F GE4−M − F W (16.6.54) (16.6.55) where F GE4−M F GEA4 = 2 1 + 1+F54s2 (16.6.56) 3 and fab (z) = ⎧ 0 ⎪ ⎨ ⎪ ⎩ 1 a/(a−z) 1+e ea/z +ea/(a−z) b z0 0<z<a (16.6.57) za Equation (16.6.56) is the enhancement factor of a modified 4th order GEA, where F GEA4 and F4 are the enhancement factors of the functionals TsGEA4 = t0 + tJ2 + t4 d3 r and Ts,4 = t4 d3 r, respectively [see Eqs. (16.4.7)−(16.4.13)]. In Eq. (16.6.57), a = 0.5389 and b = 3 are two parameters which were optimized. GDS08 Ghiringhelli and Delle Site:51 GDS08 W Ts [ρ] = Ts [ρ] + ρ(r) (A + B ln(ρ(r))) d3 r (16.6.58) where A = 0.860 and B = 0.224. MGEA4 Lee et al.:17 TsMGEA4 [ρ] = (t0 (r) + 1.789t2 (r) − 3.841t4 (r)) d3 r (16.6.59) Semilocal Approximations for the Kinetic Energy 439 RDA Karasiev et al.:52 TsRDA [ρ] TsW [ρ] = + t0 (r)Fθm0 (r)d3 r (16.6.60) where Fθm0 = A0 + A1 κ̃4a 1 + β1 κ̃4a 2 + A2 κ̃4b 1 + β2 κ̃4b 4 + A3 κ2c 1 + β3 κ2c (16.6.61) with κ̃4a = ! s4 + ap2 (16.6.62) κ̃4b = ! s4 + bp2 (16.6.63) κ2c = s2 + cp (16.6.64) 2/3 5/3 ρ and p = ∇2 ρ/ 4 3π 2 . The constants in Eqs. (16.6.61)-(16.6.64) are A0 = 0.50616, A1 = 3.04121, A2 = −0.34567, A3 = −1.89738, β1 = 1.29691, β2 = 0.56184, β3 = 0.21944, a = 46.47662, b = 18.80658, and c = −0.90346. 16.7. N - and r-dependent approximations In the approximations collected below, the analytic expressions for the kinetic energy depend explicitly not only on ρ (and its derivatives) but also on the number of electrons N and/or on the position (i.e., distance r from the nucleus). The r-dependent expressions are applicable only for mono-atomic systems. HCD84 Haq, Chattaraj, and Deb:53 TsHCD84 [ρ] GD94 1 − 40 r · ∇ρ(r) 3 d r r2 (16.7.65) Ghosh and Deb:54 TsGD94 [ρ] F97 = TsTF [ρ] = TsTF [ρ] 3 + 4 1/3 3 ρ4/3 (r) d3 r rρ1/3 (r) π r 1 + 0.043 (16.7.66) Fuentealba:55 TsF97 [ρ] = CF ρ5/3 (r) 1 1− 2/3 0.213e−8.8(ρ(r)/2) r2 d3 r (16.7.67) F. Tran & T. A. Wesolowski 440 Nagy, Liu, and Parr:56 2 NLP99 −2 3 −1 3 Ts [ρ] = 0.179883 r ρ(r)d r + 0.0622411 r ρ(r)d r NLP99 ABSP80 −8.88819 · 10 −4 +7.29627 · 10 −6 r r Acharaya et al.:57 TsABSP80 [ρ] = TsW [ρ] −2/3 −1/2 3 3 ρ(r)d r 4 3 ρ(r)d r 1.412 + 1 − 1/3 TsTF [ρ] N GR82 Gázquez and Robles:58 1.303 0.029 2 GR82 W 1 − 1/3 + 2/3 TsTF [ρ] Ts [ρ] = Ts [ρ] + 1 − N N N (16.7.68) (16.7.69) (16.7.70) GB85 Ghosh and Balbás:59 TsGB85 [ρ] 0.153 0.071 = + + 0.1369 + 1/3 − 2/3 N N 2 r · ∇ρ(r) ∇ ρ(r) d3 r × − r2 2 TsW [ρ] TsTF [ρ] (16.7.71) 16.8. Miscellaneous Approximation for the kinetic potential The modified Thomas-Fermi (MTF) model of Chai and Weeks:60 vtMTF ([ρ], r) = 5 α ∇2 ρ(r) CF ρ2/3 (r) − 3 4 ρ(r) (16.8.72) where α = 1/2. Note that there exists no functional TsMTF such that vtMTF = δTsMTF /δρ, because the second term in Eq. (16.8.72) can not be obtained as a functional derivative. Approximation for the non-additive kinetic energy Approximation to the bi-functional Tsnad[ρA , ρB ] by Lastra, Kaminski, and Wesolowski:61 5/3 5/3 5/3 nad(NDSD) (ρA (r) + ρB (r)) − ρA (r) − ρB (r) d3 r Ts [ρA , ρB ] = CF + f (ρB (r), ∇ρB (r))ρA (r) vtlimit ([ρB ], r)d3 r + C[ρB ] (16.8.73) Semilocal Approximations for the Kinetic Energy 441 where vtlimit ([ρB ], r) = 1 ∇2 ρB (r) 1 |∇ρB (r)|2 − 8 ρ2B (r) 4 ρB (r) (16.8.74) −1 −1 max λ(−sB +smin λ(−s +s ) B B ) + 1 B f (ρB , ∇ρB ) = e 1− e +1 −1 min × eλ(−ρB +ρB ) + 1 (16.8.75) = 0.3, smax = 0.9 and ρmin = 0.7), and C[ρB ] is (with the constants λ = 500, smin B B B a ρA -independent functional. The acronym NDSD (Non-Decomposable approximation to the potential involving only Second Derivatives) reflects the fact that there nad(NDSD) exists no such functional approximation T̃s [ρ] from which Ts [ρA , ρB ] can nad(NDSD) be obtained as Ts [ρA , ρB ] = T̃s [ρA + ρB ] − T̃s [ρA ] − T̃s [ρB ]. References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. G. L. Oliver and J. P. Perdew, Phys. Rev. A 20, 397 (1979). L. H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1927). E. Fermi, Z. Phys. 48, 73 (1928). C. F. von Weizsäcker, Z. Phys. 96, 431 (1935). C. Lee and R. G. Parr, Phys. Rev. A 35, 2377 (1987). P. Fuentealba and O. Reyes, Chem. Phys. Lett. 232, 31 (1995). H. Lee, C. T. Lee, and R. G. Parr, Phys. Rev. A 44, 768 (1991). Q. Zhao, M. Levy, and R. G. Parr, Phys. Rev. A 47, 918 (1993). T. A. Wesolowski and J. Weber, Int. J. Quantum Chem. 61, 303 (1997). S. Liu and R. G. Parr, Phys. Rev. A 55, 1792 (1997). A. Kompaneets and E. Pavlovskii, Sov. Phys. JETP 4, 328 (1957). D. A. Kirzhnits, Sov. Phys. JETP 5, 64 (1957). C. H. Hodges, Can. J. Phys. 51, 1428 (1973). D. R. Murphy, Phys. Rev. A 24, 1682 (1981). B. K. Jennings, PhD thesis, McMaster University, Canada (1976). M. Brack, B. K. Jennings, and Y. H. Chu, Phys. Lett. B 65, 1 (1976). D. Lee, L. A. Constantin, J. P. Perdew, and K. Burke, J. Chem. Phys. 130, 034107 (2009). E. V. Ludena and V. V. Karasiev, in Revews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G Parr, edited by K. Sen (World Scientific, Singapore, 2002), pp. 612–665. E. Pearson, PhD thesis, Harvard University, USA (1982). A. E. DePristo and J. D. Kress, Phys. Rev. A 35, 438 (1987). A. D. Becke, Phys. Rev. A 38, 3098 (1988). H. Ou-Yang and M. Levy, Intl. J. Quantum Chem. 40, 379 (1991). A. J. Thakkar, Phys. Rev. A 46, 6920–6924 (1992). Y. A. Bernard, M. Dulak, J. W. Kaminski, and T. A. Wesolowski, J. Phys. A 41, 055302 (2008). F. Tran and T. A. Wesolowski, Int. J. Quantum Chem. 89, 441 (2002). J. P. Perdew, Phys. Lett. A 165, 79 (1992). A. Lembarki and H. Chermette, Phys. Rev. A 50, 5328 (1994). 442 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. F. Tran & T. A. Wesolowski J. P. Perdew, Electronic Structure of Solids (Akademie Verlag, Berlin, 1991). J. P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986). L. Vitos, H. L. Skriver, and J. Kollár, Phys. Rev. B 57, 12611 (1998). L. Vitos, B. Johansson, J. Kollár, and H. L. Skriver, Phys. Rev. A 61, 052511 (2000). M. Ernzerhof, J. Mol. Struct. (THEOCHEM) 59, 501 (2000). J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). V. V. Karasiev, S. B. Trickey, and F. E. Harris, J. Comput.-Aided Mater. Des. 13, 111 (2006). C. Adamo and V. Barone, J. Chem. Phys. 116, 5933 (2002). L. A. Constantin and A. Ruzsinszky, Phys. Rev. B 79, 115117 (2009). L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala, Phys. Rev. Lett. 106, 186406 (2011). D. J. Lacks and R. G. Gordon, J. Chem. Phys. 100, 4446 (1994). A. D. Becke, J. Chem. Phys. 84, 4524 (1986). A. D. Becke, J. Chem. Phys. 85, 7184 (1986). A. E. DePristo and J. D. Kress, J. Chem. Phys. 86, 1425 (1987). D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993). J. P. Perdew, M. Ernzerhof, A. Zupan, and K. Burke, J. Chem. Phys. 108, 1522 (1998). Y. Tal and R. Bader, Int. J. Quantum Chem. 12(S12), 153 (1978). P. L. Cummins and S. Nordholm, J. Chem. Phys. 80, 272 (1984). E. W. Pearson and R. G. Gordon, J. Chem. Phys. 82, 881 (1985). N. L. Allan, C. G. West, D. L. Cooper, P. J. Grout, and N. H. March, J. Chem. Phys. 83, 4562 (1985). G. Plindov and S. Pogrebnya, Chem. Phys. Lett. 143, 535 (1988). J. P. Perdew and L. A. Constantin, Phys. Rev. B 75, 155109 (2007). L. M. Ghiringhelli and L. Delle Site, Phys. Rev. B 77, 073104 (2008). V. V. Karasiev, R. S. Jones, S. B. Trickey, and F. E. Harris, Phys. Rev. B 80, 245120 (2009). S. Haq, P. Chattaraj, and B. Deb, Chem. Phys. Lett. 111, 79 (1984). S. K. Ghosh and B. M. Deb, J. Phys. B 27, 381 (1994). P. Fuentealba, J. Mol. Struct. (THEOCHEM) 390, 1 (1997). A. Nagy, S. Liu, and R. G. Parr, Phys. Rev. A 59, 3349 (1999). P. K. Acharya, L. J. Bartolotti, S. B. Sears, and R. G. Parr, Proc. Natl. Acad. U.S.A. 77, 6978 (1980). J. L. Gázquez and J. Robles, J. Chem. Phys. 76, 1467 (1982). S. K. Ghosh and L. C. Balbás, J. Chem. Phys. 83, 5778 (1985). J. D. Chai and J. A. Weeks, J. Phys. Chem. B 108, 6870 (2004). J. M. G. Lastra, J. W. Kaminski, and T. A. Wesolowski, J. Chem. Phys. 129, 074107 (2008).
© Copyright 2025 Paperzz