Name: ________________________ Class: ___________________ Date: __________ ID: R Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review 1. Write –3x2(–2x2 – 5x3) in standard form. State whether the function is even, odd, or neither. Show your work. Answer the questions using an algebraic method. Check by graphing. 8. f(x) = |x + 1 | + |x − 1 | 2. The polynomial x 3 + 6x 2 − 55x − 252 expresses the volume, in cubic inches, of a shipping box, and the width is (x + 4 ) in. If the width of the box is 16 in., what are the other two dimensions? (Hint: The height is greater than the depth.) Height: __________ answer: ____________ . 9. f(x) = x 3 + 2x − 4 answer: _____________ Depth:__________ 3. State the number of possible real zeros and turning points of f(x) = x 6 + 4x 5 − 5x 4 . Then determine all of the real zeros by factoring. . 10. Is the function graphed below even, odd, or neither? Number of possible real zero: ______ Number of possible turning points: ______ Real Zeros: _________ Simplify the given expression. Ê ˆ 4. (3x − 5) ÁÁ 2x 2 + 6x − 3 ˜˜ Ë ¯ answer: ____________ 11. True or False. A polynomial can have negative exponents as powers of the variables. Ê ˆ Ê ˆ 5. ÁÁ 8x 2 − 14x − 25 ˜˜ + ÁÁ −5x 3 + 11x 2 − 2 ˜˜ Ë ¯ Ë ¯ 12. True or False. When two polynomials are subtracted the result is sometimes another polynomial. Ê ˆ Ê ˆ 6. ÁÁ −8x 2 − 2x + 13 ˜˜ − ÁÁ 13x 2 + 16x − 2 ˜˜ Ë ¯ Ë ¯ Find the real solutions of the equation by graphing. Round to 3 decimal places if necessary. 7. Divide using method of your choice. −2x 3 − 4x 2 + 4x − 3 by x – 4. 13. x 3 + 2x + 2 = 0 1 Name: ________________________ ID: R What are the real or imaginary solutions of each polynomial equation? Factor the polynomial completely. 18. 7x 2 − 17x + 10 3 2 14. 2x − 3x − 16x + 24 = 0 . 15. x 4 − 13x 2 = −36 19. 24x 3 − 40x 2 + 15x − 25 16. 125x 3 + 343 = 0 20. 3x3 – 24x2 + 45x 17. 20x 2 − 11x − 4 = 0 What is the degree of the polynomial that generates the given data? 21. x –6 –2 0 2 6 y 138 14 0 18 150 a. b. linear model cubic model c. d. quadratic model none of these 23. Describe the end behavior of the graph of f(x) = x 2 (x + 10)(–2x + 4) using limits. What are the relative maximum and minimum of the function? Use interval notation to describe where the function is increasing or decreasing. State the domain and range. 22. f(x) = 4x 3 + x 2 − 3x Minimum: ________ a. b. Maximum: ________ c. Increasing: _________ Decreasing: _______ d. Domain: _________ Range: _________ 2 As x → − ∞, f(x) → +∞ As x→ + ∞, f(x)→ -∞ As x → − ∞, f(x) → -∞ As x→ + ∞, f(x)→ -∞ As x → − ∞, f(x) → -∞ As x→ + ∞, f(x)→ +∞ As x → − ∞, f(x) → +∞ As x→ + ∞, f(x)→ +∞ Name: ________________________ ID: R 24. Use the remainder theorem to find P(–4) for P(x) = x 4 + 8x 3 − 10x 2 + x + 6 . 29. Graph y = 10x 2 − 9 − x 4 . How many turning points are there? State the domain and range. Divide using long division. Ê ˆ 25. ÁÁ −8x 6 + 10x 5 + x 4 + 7x 3 − 18x 2 + 30x − 21 ˜˜ ÷ Ë ¯ (−2x + 3) Turning points: __________ Given a polynomial and one of its factors, find the remaining factors of the polynomial. Write the polynomial in factored form. Don’t forget the given factor. Domain : ___________ Range: _____________ 26. 12x 3 − 100x 2 + 168x + 30; x − 6 For the given graph, a. describe the end behavior, b. determine whether it represents an odd-degree or even-degree polynomial function, and c. state the number of real zeros. 27. 4x 3 − 48x 2 − 49x + 588; x − 12 30. 28. The perimeter of a rectangle is 24a + 4b The length of rectangle is 9a − 2b. Find the measure of the width. a. __________________________ b.___________ c. ____________ 3 Name: ________________________ ID: R 31. A manufacturer produces boxes for a calculator company. The boxes have a volume of 240cm3 . The height of each box is 6cm less than the width. The length is 1 cm less than twice the width. Find the dimensions. Divide using synthetic division. 35. Determine the sign of the leading coefficient and the least possible degree of the polynomial for the given graph. 32. Divide 20x 3 + 150 − 5x by (x + 2 ). 33. What is a cubic polynomial function in standard form with zeros –4, 1, and –5? 36. For the following function, find the intervals where the function is increasing or decreasing. f(x) = x 3 − 4x 2 + x + 8 34. Determine the zeros and the end behavior of f(x) = −x(x − 1)(x − 3) 2 . Then sketch a graph of the function. 37. Is x + 4 a factor of f(x) = x 3 + 12x 2 + 29x − 7 . Zeros: _________________ End behavior: ________________________ ________________________ 4 ID: R Secondary Math 3 Honors - Polynomial and Polynomial Functions Test Review Answer Section 1. 15x5 + 6x4 2. height: 21 in. depth: 5 in. 3. 6 real zeros and 5 turning points; 0, 1, and –5 4. 6x 3 + 8x 2 − 39x + 15 5. −5x 3 + 19x 2 − 14x − 27 −21x 2 − 18x + 15 −2x 2 − 12x − 44, R –179 even neither neither F F –0.771 3 14. ,±2 2 2 15. 2, –2, 3, –3 6. 7. 8. 9. 10. 11. 12. 13. 7 35 ± 35i 3 16. − , 5 50 4 1 17. ,− 5 4 18. (7x − 10)(x − 1) 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. (8x 2 + 5)(3x − 5) 3x(x – 5)(x – 3) C The relative maximum is at (–0.59, 1.3) and the relative minimum is at (0.42, –0.79). Increasing: ÊÁË −∞,−0.59 ˆ˜¯ and ÊÁË 0.42,∞ ˆ˜¯ Decreasing : ÊÁË −0.59,0.42 ˆ˜¯ Domain: ÊÁË −∞,∞ ˆ˜¯ Range: ÊÁË −∞,∞ ˆ˜¯ B –414 −3 4x 5 + x 4 + x 3 − 2x 2 + 6x − 6 + −2x + 3 (6x + 1)(2x − 5)(x − 6) (2x −7)(2x + 7)(x − 12 ) 3a + 4b The measure of the width of the rectangle is given by the expression (24a + 4b) − 2 (9a − 2b ) Simplify this expression by grouping similar terms and then combining them. 1 ID: R 29. There are three turning points. 30. The end behavior of the graph is f (x ) → −∞ as x → +∞ and f (x ) → −∞ as x → −∞ . It is an even-degree polynomial function. The function has four real zeros. 31. 15 cm. by 8 cm. by 2 cm. 32. 20x 2 − 40x + 75 33. f(x) = x 3 + 8x 2 + 11x − 20 34. 0, 1, 3 (multiplicity of 2) As x → − ∞, f(x) → -∞ As x→ + ∞, f(x)→ −∞ 35. negative, degree 3 36. increasing ÊÁË −∞,0.1 ˆ˜¯ ∪ ÊÁË 2.5,∞ ˆ˜¯ decreasing (0.1, 2.5) 37. No. (use synthetic division to determine if it is a factor.) 2
© Copyright 2025 Paperzz