SO U TH FLO R ID A W A TER M A N A G EM EN T D IS T R IC T

SOUTH FLORIDA WATER MANAGEMENT DISTRICT
Technical Publication # 75-1
March, 1975
CHEMICAL AND BIOLOGICAL INVESTIGATIONS OF
LAKE OKEECHOBEE
JANUARY 1973 - JUNE 1974
INTERIM REPORT
By
Frederick E. Davis
and
Michael L. Marshall
Environmental Sciences Division
Resources Planning Department
Central and Southern Florida
Flood Control District
West Palm Beach, Florida
ADDENDUM
Since the original publication of this report, an error was discovered in the
calculation procedure for primary productivity. Table 7 is reproduced in this revised
report with the corrected vahjes. The average gross primary productivity for 1973
was 1156 mg C/m3/day ratherthan 1864 mg C/m3/day as reported originally.
IABLE OF CONTENTS
List of Tables
...........................................................
List of Figures
. . 1 ..................................... ......... .......
Summary
................................... ........ .... ................. 1
Introduction
.... ................................................ ........
Materials and Methods
Results
1
................................ ................... 12
.......... ...................................... .................. 23
Discussion
....................................................... ........74
Conclusions
......... ...................................................... 87
References
............................................................... 89
Appendix A
-
Lake Okeechobee Water Chemistry Data;
Lake Stations 1 - 8 and 10 - 16
.......... .............A-l
Appendix B
-
Lake Okeechobee Water Chemistry Data;
............................ B-l
Inflow and Outflow Stations
Appendix C
-
Distribution of Phytoplankton Abundances
and Compositions
............ ....................... C-l
Appendix D
- Scatter Diagrams for Significant Parameter Pairs ....... ..D-l
Appendix E
- Gross Primary Productivity Values of Various
FI orida Lakes
........................................ E-l
LIST OF TABLES
Table 1
Analytical Methods
................................................ 16
Table 2
Selected Chemical Parameters
Lake Okeechobee Monthly Means ..................................... 24
Table 3
Selected Chemical Parameters
Lake Okeechobee Seasonal Means May 1973 to November 1973 ....... 34
Table 4
Selected Chemical Parameters
Lake Okfeechobee Seasonal Means November 1973 to May 1974 ......... 35
Table 5
Selected Chemical Parameters
Lake Okeechobee Study Means January 1973 to June 1974 ........... 36
Table 6
Trace Metal Analysis Lake Okeechobee June 1974 .................. 38
Table 7
In Situ Lake Okeechobee 1973 Primary Productivities .............42
Table 8
Lake Okeechobee Phytoplankton ..................................... 45
Table 9
Phytoplankton Densities Lake Okeechobee 1973..................... 51
TabTe 10
Benthic Invertebrate Fauna Collected from
Lake Okeechobee in 1973 ............................................ 55
Table 11
Water Quality of Major Inflows
to Lake Okeechobee May 1973 - May 1974 ........................... 57
Table 12
Lake Okeechobee Water B u d g e t ...................................... 65
Table 13
Major Ion Budget May 1973 - May 1974 ............................. 67
Ta&le 14
Nutrient Budget May 1973 - November 1973 .........................68
Table 15
Nutrient Budget May 1973 - May 1974 .............................. 69
Table 16
Regression Analysis for Lake Okeechobee Data ..................... 71
Table 17
Average Water Quality Parameters
Lake Okeechobee 1969 - 1973 ........................................75
LIST OF FIGURES
Figure 1
The State of Florida and the Central and
Southern Florida Flood Control District . ......... 2
Figure 2
Rainfall on Lake Okeebhobee
December 1972 to June 1974...........................6
Figure 3
Mean Monthly Stage Lake Okeechobee
December 1972 to June 1974............................. 8
Figure 4
Drainage Basins to Lake Okeechobee.................... 9
Figure 5
Lake Okeechobee Land Use.............................. 11
Figure 6
Lake Okeechobee Sampling Stations . , . . .......... 13
Figure 7
Lake Okeechobee Mean Values for Secchi Depth,
Temperature, D.O., and Specific Conductivity
January 1973 to July 1974 ............................ 29
Figure 8
Lake Okeechobee Mean Nutrient Concentrations
January 1973 to July 1974 ......... ............... .30
Figure 9
Average Primary Productivity Corrected by
Day Length by Month 1973 ............................ 40
Figure 10
Monthly Primary Productivity Corrected by
Day Length by Month at Stations 1, 4, 5,
and 6 1973 ............................................41
Figure 11
Average Phytoplankton Composition by
Station 1973 ......................................... 47
Figure 12
Average Phytoplankton Densities and Composition
by Month 1973......................................... 50
Figure 13
Phytoplankton Densities at Stations 1, 4, 5, and
6 by Month 1973............................... .. . .53
Figure
14
Nutriefot Loadings to Lake Okeechobee
Kissimmee River 1973 - 1974..........................59
Figure 15
Nutrient Loadings to Lake Okeechobee
Nubbin Slough 1973 - 1974............................60
Figure 16
Nutrient Loadings to Lake Okeechobee
Agricultural Canals 1973 - 1974 ......................61
Figure 17
Nutrient Loadings to Lake Okeechobee
Rainfall 1973 - 1974 ................................ 62
SUMMARY
The results of the initial 18 months of the chemical and biological
studies of Lake Okeechobee have provided some reliable baseline data on the
Lake.
The inferences made from this study are based on one year's data and may
be amended when more data becomes available.
Comparison of average nitrogen and phosphorus levels in the Lake with
previously reported levels does not show any significant increases during the
last five years.
There were, however, significant areal and seasonal variations
in these nutrient parameters during this study.
Generally, nutrient values
were higher during the dry winter months and lower during the wet summer months.
The areal distribution was related to both major inflows and bottom sediment
characteristics.
Based on yearly average values, phosphate levels were highest
in the northern section of the Lake while the highest nitrogen concentrations
appeared in the southern section.
The average gross primary productivity for Lake Okeechobee in 1973 was
o
3
1865 mg C/nr/day; the average net primary productivity (1794 mg C/m /day) was
essentially the same.
Peaks in primary productivity occurred in the spring (March and April),
early summer (June), and fall (August - October).
of the study period were observed in the fall.
peaks varied from location to location.
The highest productivities
The magnitude and timing of the
The data for the spring peak was in­
complete but did indicate lower productivities than in the fall.
ductivities for the early summer peak were lower still.
The pro­
The north and north-
central areas of the Lake were the most productive; the southern and western
portions were less so.
Small, flagellated, unicellular, green algae appeared to be responsible
for much of the primary productivity occurring in the Lake.
Blue-green algae (Cyanophyta) dominated the phytoplankton of Lake Okeechobee.
Also present, in order of decreasing abundance, were green algae (Chlorophyta),
diatoms (Chrysophyta), and euglenoids (Euglenophyta).
Two pronounced maxima in phytoplankton densities were observed, one in the
spring and one in the fall.
The spring pulse (March - May) was composed initially
of small, flagellated, unicellular green algae.
They were succeeded by larger
populations of filamentous blue-green algae and diatoms.
The fall pulse had
lower phytoplankton densities and was of longer duration than the spring pulse.
The peak in phytoplankton densities during the fall was observed in September.
This pulse was composed initially of filamentous blue-green algae, which were
succeeded by large populations of colonial blue-green algae and small, flagellated,
unicellular green algae.
Resident algal populations were shown to differ within the Lake.
Peripheral
areas near Fisheating Creek and the Kissimmee River-Nubbin Slough complex averaged
more blue-green algae than did other areas in the Lake.
abundant at the southern end of the Lake.
Green algae were more
The central areas of the Lake ex­
hibited more temporal shifts in algal populations than did peripheral areas.
In terms of nutrient loadings, some of the less significant water inflows
were highly significant sources of nitrogen and phosphorus.
Nubbin Slough, which
discharged less than 7% of the total inflow into the Lake from May 1973 to May
1974, accounted for 40% of the total phosphate loading.
Similarly, the agricul­
tural canals (Miami, North New River and Hillsboro Canals) contributed only 9%
of the total water inflow but 32% of the total nitrogen loading.
The Kissimmee River and direct rainfall into the Lake were each responsible
for approximately 35% of the total water input.
:
ii
However, chemistry data indicates
that these two major sources of water are not the major sources of nutrients.
Rainfall supplied only limited amounts of nutrients due to the low concentra­
tion of nutrients in rain.
Although the Kissimmee River supplied significant
quantitites of nitrogen (30%) and phosphorus (21%) to Lake Okeechobee, the high
loadings were primarily due to high discharge rather than high concentrations of
nutrients.
In fact, the average concentrations in the River were very similar
to the average Lake concentrations.
The high phosphate loadings for Nubbin Slough and the high nitrogen loadings
from agricultural canals to the south of the Lake may indicate a general relation­
ship between land use and run-off water quality.
The possible concentration of
animal waste in the nubbin Slough drainage basin may be responsible for the
high phosphate values while nitrification and subsequent leaching in the Everglades
agricultural area could account for high nitrate nitrogen concentrations in the
run-off water.
Chemistry data from Lake sampling stations near the major discharge points
do not immediately reflect the high nutrient loadings during duly, August and
September, although yearly averages of nutrient concentrations at peripheral
stations do show the influence of the loadings.
Rapid biological uptake of
incoming nutrients may account for the delay in impact on chemistry data.
The
nutrient budgets, the high primary productivity rates, and the response of
phytoplankton populations to loadings suggest biological uptake of nutrient loadings.
The timing and magnitude of the fall phytoplankton and primary productivity
peaks at the peripheral stations appeared to be related to the nutrient loadings
of the proximal inflows.
The data indicates probable relationships between ortho­
phosphate loadings and blue-green algae in the northern end of the Lake and
between nitrate loadings and green algae in the southern end.
Although biological processes may be responsible for the rapid assimilation
of nutrient loadings during the periods of high discharges and subsequently for
the low summer value of ambient materials, the results of regression analyses
indicate that nutrient variations within the Lake are primarily dependent upon
physical processes.
Variations in both dissolved and total species of nitrogen
and phosphorus were found to be related to wind stress and sediment characteristics
at each station.
Generally increased nutrient values were associated with increased
wind stress (wave action) which occurred primarily during the winter months.
There
was also a tendency for nutrient values to be higher at stations where the sediments
were predominantly mud or silt.
Regression analysis showed only occasional significant relationships between
biological activity (primary productivity and phytoplankton densities) and
chemical or physical processes.
The application of the chemical and biological data to several different
methods of establishing trophic levels of lakes indicate that Lake Okeechobee
would be classically defined as an early eutrophic lake.
However, sufficient
data are not available to determine whether or not this condition is a result of
recent cultural eutrophication or the "natural" condition of the Lake.
Establishing the trophic state of Lake Okeechobee may be somewhat misleading
since the concept of trophic state indicators and trophic levels have classically
been applied to temperate region lakes and Lake Okeechobee lies within the semitropical climatic zone.
1
INTRODUCTION
Lake Okeechobee lies in the center of Florida approximately 200 miles north
of the southern tip of the peninsula.
As the major storage basin for surface
water in southern Florida, the Lake is a highly significant part of the Central
and Southern Florida Flood Control Project which was authorized by the 80th
Congress in 1948 (Figure 1).
The Lake and its tributaries and distributaries
have been considerably altered by various attempts at water management in the
northern Everglades.
Presently all major inflows and outflows associated with
the Lake except for Fisheating Creek have some type of flow control structure.
At several points, notably the Lake termini- of the Miami, North New River and
Hillsboro Canals, water can be made to flow into or out of the Lake depending
upon flood control and water supply criteria.
The Lake itself is surrounded by
the Hoover Dike which has been constructed at approximately the 15 foot m.s.l.
contour.
The 25 foot high dike was designed to prevent damaging storm surges,
which may accompany tropical storms, from flooding developed land adjacent to
the Lake.
The original condition of the Lake can only be inferred from journals and
other writings of early visitors to the Lake.
Brooks (1974) gives a summary of
many of these reports which indicate that the original Lake had a variable but
considerably greater depth than the present mean depth of 3 meters and a much
less defined shoreline.
There have been only limited previous studies of the chemical and biological
characteristics of Lake Okeechobee.
In 1940 the United States Geological Survey
(USGS) sampled Lake Okeechobee as part of their survey of surface water quality
in the Southeast region of the United States {Parker,et _al.* 1955).
The results
of chemical analysis on these samples indicated that the Lake contained signifi-
3
cantly higher concentrations of major ions than could apparently be accounted
for by the inflows to the Lake.
The high dissolved solids of the lake water
were attributed to dissolution of calcareous sediments in the Lake.
During the
years 1969 to 1972 the USGS undertook a much more intensive study of the Lake
in cooperation with the Central and Southern Florida Flood Control District (FCD).
The results of this study (Joyner, 1972) indicated that the Lake was receiving
and storing considerable amounts of nutrients.
Mass balance calculations for
total dissolved solids indicated, as did the 1940 report, that unaccounted for
sources of major ions must exist.
This USGS report concluded that chemical and
biological characteristics of the Lake were indicative of an early eutrophic
condition.
Since Lake Okeechobee represents an important natural resource in terms
of a wildlife habitat and major freshwater
reservoir, the FCD decided to initiate
its own environmental investigations of the Lake.
This decision was made based
on the realization that the Lake and its tributaries were being exposed to ever
increasing environmental stresses and that the recent USGS report indicated that
early eutrophic conditions already existed within the Lake.
In order to fully
evaluate current and future stresses on the Lake, a broad range of studies were
developed.
This report is limited to only a part of these studies.
It concerns
the results of chemical and biological investigations of the Lake's limnetic zone
from January 1973 to July 1974.
Goals
The overall goal of this and other studies of Lake Okeechobee is to increase
the knowledge of the various natural systems related to the Lake and the inter­
actions between these systems.
This information will be necessary to make a
proper management decision if the Lake is to be maintained as a natural resource.
The specific objectives of the chemical and biological studies of Lake
Okeechobee may be summarized as follows:
1.
Provide continuity in base line water chemistry data
by interfacing
with the previous USGS study.
2.
Calculations of loading rates and materials budgets of the Lake for
both nutrients and major ions.
3.
Determine systematic relationships among biological, chemical, and
physical factors.
4.
Assessment of the Lake's current trophic state using primary
productivity, algal populations, benthic invertebrates and ambient
water quality data.
5.
Provide base line and/or inpejt data■
to:other studies
concurrently
being conducted within Lake Okeechobee.
Morphology
Lake Okeechobee is thought to be approximately 4,000 - 6,000 years old
(Brooks, 1974).
It is considered to have been formed as the result
subsidence of Miocene clays.
of the
As the subsequent depression filled with fresh­
water the natural outlets became blocked by vegetation.
The Lake reached its
modern size and shape in approximately 265 A.D., when all natural outlets of
the Lake became'filled by organic sills.
From that time until the present
drainage attempts, the only major loss of water from the Lake other than
evaporation was a sheet flow to the south.
Lake Okeechobee, which is at approximately 27° N Latitude and 80° W Longi­
tude, is one of only a few fresh water lakes occurring within the semi tropics.
Most other lakes within the latitudinal range of 30° N and 30° S latitude are
either deep mountain lakes or temporary saline lakes.
The surface area of Lake Okeechobee, 1820 km
one of the largest lakes in the United States.
2
(450,000 acres) makes it
However, the mean depth of the
Lake is usually less than 3 meters with the maximum depth of less than 5 meters.
The lake surface is somewhat pie-shaped with the apex of the wedge on the western
shore.
The longest axis, is about 55 km (35 miles) and runs north to south.
east-west axis is about 49 km (30 miles).
The
There are extensive littoral zones
on the south, west, and northwest shores of the Lake.
The Lake basin is saucer­
shaped with the lowest contour just below mean sea level.
Hydroperiod
The level of water in Lake Okeechobee is currently regulated between 14.0'
m.s.l, and 16.0' m.s.l. for flood control and water supply needs.
The lower
lake stages are maintained during the summer and early fall to provide maximum
flood control benefits while the high stages are designed to meet water supply
needs during the dry winter and spring months.
In reality it is very difficult to maintain the regulation stages and Lake
levels may ordinarily vary from 10.5’to 16.5' m.s.l.
The difficulty in main­
taining lake stages stems from variable climatic conditions and short water
residence times.
The highly variable rainfall rates in South Florida, especially
during the wet months from June through October, provide substantially different
quantities of water to Lake Okeechobee from year to year.
Since the residence
time of water in the Lake is approximately one year, the volume and stage of
the Lake vary considerably.
The study period from January 1973 to June 1974 was one in which the rain­
fall rates and Lake hydroperiod were close to the normal or average events for
the past 40 years.
Figure 2 shows the monthly rainfall rates in the Okeechobee area during
FIGURE
the period of the study.
Figure 2 also shows the average rqinfaTl for the
area based on the 1930 to 1970 period of record.
A total of 59 inches of rain
fell during the initial 18 months of this study,which is only 6 inches less
than the 65 inches which could normally be expected.
The mean monthly lake stages and average lake stage for the 1930 to 1970
period of record are shown in Figure 3.
The stages were well below average
during the first nine months of the study but rose to above average stage
during the fall of 1973.
half of 1974.
The stage fell to below normal again during the first
However, the above average rains in June 1974 continued throughout
the summer causing lake stages to rise dramatically during this period to above
average levels.
Drainage Basins
The major natural and man-made drainage basins to Lake Okeechobee are shown
in Figure 4.
The natural basins consist primarily of the Kissimmee River,
Fisheating Creek and Taylor Creek.
Nubbin Slough now includes most of Taylor
Creek drainage basin due to flood control and water supply projects.
The man-made
drainage to the Lake includes the St. Lucie Canal, Hillsboro Canal, North New
River Canal and the Miami Canal.
These canals can convey water both into or out
of the Lake depending upon flood control and water supply criteria.
As mentioned
earlier all inflows into the Lake except Fisheating Creek have flow control
structures associated with them to maintain canal and groundwater levels in upland
areas.
The total drainage basin of Lake Okeechobee including Lake Istokpoga drainage
is approximately 4292 square miles.
One half of this area is contained within
the 2335 square mile Kissimmee River drainage basin.
The next largest subdrainage
basin is the 652 square mile Lake Istokpoga basin which can drain either into the
a
M E A N MONTHLY S T A G E L A K E O K E E C H O B E E
DEC. 1972 TO JUNE 1974
FIGURE
MONTH
1973
1974
9
(£0n°®£o2o3
GLADES
St Luoe
Clewiston
Northwest Shore Basin |
Kissimmee River
Rsheating Creek
Hillsboro Canal
Miami Cana)
North East Shore Basin
Harney Pond Canal
Indian Prairie Canal
North New RiverCanal
Lake Istokpoqa
Taylor Creek
DRAINAGE BASINS TO LAKb OKEECHOBEE
FIGURE 4
Kissimmee River or directly into Lake Okeechobee via the Harney Pond Canal or
Indian Prairie Canal.
Besides conveying water from Lake Istokpoga to Lake
Okeechobee these two canals have additional drainage areas of 286 squire miles.
Fisheating Creek with a drainage area of 461 square miles has the third largest
drainage area of all inflows to the Lake.
The three agricultural canals - Miami,
North New River and Hillsboro - have a combined drainage area of 311 square miles.
Water which has drained into the north ends of these canals can be pumped into
the Lake by FCD pump stations S-2 and S-3.
Most of Taylor Creek and Nubbin
Slough runoff now discharges into the Lake at a common point and the combined
drainage area of this system is 184 square miles.
Creek Basin on Figure 4.
The St. Lucie Canal periodically delivers water to
Lake Okeechobee although in very minor amounts.
mately 250 square miles.
It has been designated Taylor
It drains an area of approxi­
The two areas on the map designated as the Northeast
Shore and Northwest Shore Basins lie between
the Lake levee andtieback levees
for major inflows and are drained by several
FCD pump stations.
The general land use patterns for the drainage basins to Lake Okeechobee
are shown in Figure 5.
land.
The major land uses are either as pasture land or crop
Pasture land use predominates in the Kissinrmee River, Nubbin Slough,
Indian Prairie Canal and Harney Pond Canal basins.
has particularly heavy dairy activity.
The Nubbin Slough basin
The area to the south and east of the
Lake which is drained by the Miami, North New River, Hillsboro and St. Lucie
Canals is heavily devoted to both sugar cane
and vegetable crops.
only minor urban areas within any of the basins.
There
are
LAND USE MAP
FIGURE
5
MATERIALS AND METHODS
Sampling Locations and Frequencies
Figure 6 shows the location of all stations at which chemical and
biological data were collected.
The eight stations chosen for routine sampling
were located to provide both representative lake data and to monitor the
influence of major inputs into the Lake.
Stations 1, 2 and 3 were located in
the northern end of the Lake to provide data on the possible impact of discharges
from the Kissimmee River and Nubbin Slough.
Stations 6 and 7 were located in
the south end of the Lake, to monitor the effects of backpumping from the
North New River Canal (S-2) and the Miami Canal (S-3).
Station 5 was located
at the western edge of the Lake to measure the influence of Fisheating Creek
and/or the extensive littoral area on the western and southwestern shores of
the Lake.
Stations 4 and 8 were designed to monitor the mid-lake conditions
and were located as far from any major input as possible.
The semi-annual stations (10 through 16) provided data to evaluate areas
of the Lake which were not routinely monitored and therefore test the effectiveness
of the monitoring system.
Chemistry samples were collected monthly at Stations 1 through 8 from
January 1973 through January 1974.
Beginning in February 1974 chemistry
samples were collected every two weeks at these stations.
During the months of
May and November, chemistry samples were collected at Stations 10 through 16
as well as 1 through 8 .
Since January 1973, phytoplankton samples were collected at Stations 1
through 8 at monthly intervals to coincide with the chemistry sampling.
Benthic
invertebrate samples were also taken at these stations at quarterly intervals.
Primary productivity measurements were taken at monthly intervals at Stations
5iattd' 6 beginning in January 1973, and at Stations 1 and 4 beginning in March 1973.
13
FIGURE
6
Figure 6 also shows the location of the sampling stations for the major inflows
and outflows of Lake Okeechobee.
During periods of high flows, May 1973 to
November 1973, weekly chemistry samples were collected at the major inflows and
outflows.
Thereafter samples were collected at these stations every two weeks.
Chemistry Methods
Until June 1973, field data (dissolved oxygen, temperature, specific
conductivity and pH) were recorded with a Yellow Springs Instrument Company
model 54 D.O./Temp. probe, a Beckman Instruments Company model RB-3, Y147
conductivity meter and Beckman Instruments Company model 100901 field pH meter.
After June 1973 all field data were collected with a Hydrolab
Surveyor II.
Secchi disc readings were measured in centimeters using standard 8 " disc.
Both surface and bottom water chemistry samples were collected for
laboratory analysis at each Lake station with a 5 liter PVC Niskin sampler.
The surface samples were collected from 0.5 meters below the surface.
Bottom
samples were taken at a depth of 0.5 meters above the bottom to prevent con­
tamination of the sample with bottom sediments.
Dissolved nutrient and major anion samples were preserved by filtration
through 0.45 micron membrane filters.
Samples for major cation and trace metal
analysis were also filtered and preserved with concentrated nitric acid (10
drops/100 ml).
analysis.
Unfiltered aliquots of samples were collected for total nutrient
All samples were stored in polyethylene bottles on ice.
The time
between collection of samples and chemistry laboratory analysis varied between
1 and 2 weeks.
In the laboratory samples were stored at 4°C in the dark.
No field data were collected at the major,inflows and outflows.
Surface
chemistry samples were collected and stored unfiltered on ice for 12 to 24
hours until they arrived at the laboratory.
described for the Lake samples above.
They were then filtered as
15
The routine chemical analyses on each sample usually included the
following parameters:
1.
Dissolved nutrients (nitrate, nitrite, ammonia and ortho-phosphate)
2.
Total phosphorus and total nitrogen
3.
Major cations and anions (sodium, potassium, calcium, magnesium, chloride
silicate, alkalinity and sulfate)
4.
Trace metals (semi-annually during June and January)
The analytical chemistry methods used in this study were either recommended
or approved by the Environmental Protection Agency or the American Public Health
Association.
Most analyses were performed on either a Technicon Industrial
Systems II AutoAnalyzer or a Perkin Elmer Model 306 Atomic Absorption Spectro­
photometer.
Specific methodologies are shown in Table 1.
Biology Methods
Primary productivity estimates were made by the light and dark bottle
method (Strickland and Parsons, 1968).
Oxygen concentrations were determined
in the field by the Azide modification of the Winkler titration method (Standard
Methods, 13th Ed.).
Duplicate bottles, suspended from floats, were incubated
111 S 1‘
tu for six hours at a depth of 22 cm.
This depth was the minimum depth
at which bottles could be placed and not have them break the surface during
periods of rough water.
Incubation was initiated between 0900 and 1100 hours.
Daily productivities were calculated by multiplication of the.average pro­
ductivity rate for the six hour incubation period by the day length.
Two 250 - 300 ml aliquots of raw water were taken at a depth of 0.5
meters for phytoplankton analysis.
One aliquot was refrigerated to allow later
examination of live samples and the other was preserved for enumeration.
Initially 45S formaldehyde was used as the preservative but from August 1973
to the present, Lugol1s solution has been used.
TABLE 1
■
A N A L Y T I C A L METHODS'
AUTO A N A L Y Z E R
Range
Sensitivity
0-10 m e q / 1
0,10 meq/l
P o t e n t i o m e t r i c titr a t i o n
R e f . S t a n d a r d M e t h o d s , 13th Edition, p. 52-56.
0-10 m e q / 1
2% o f full scale
0 .3 m e q / 1
Ammonia
Berthelot reac t i o n
Tech n i c o n A A II, m e t h o d #154 - 7 1 W
Ref: D. D. Van S lyke § A. J. Hillen, Bio Chem. 102,
p. 499, 1933; S. Kallman, Presentation, April 1967,
San Diego, Calif.; W. T. Bolleter, C. J. Bushman &
P. N. Tidwell, A n a l Chem. 33, p. 592, 1961] J. A.
Tell o w 5 A. L. Wilson, Analyst, 89, p. 453, 1964;
A. Tarugi & F. Lenci, Boll C h i m Farm, 50, p. 907, 1912;
F W P C A Methods o f Chem. Anal, o f W a t e r § W a s t e Water.
Nov. 1969, p. 137.
0-0.50 pp m
0 . 0 1 0 pp m
2 % o f full scale
Chloride
Ferric Thiocyanate complex
Tech n i c o n A A II, m e t h o d # 9 9 - 7 0 W
Ref:
A u t o m a t i c Anal y s i s o f C hlorides in Sewage, J a m e s E.
O'Brien, W a s t e s Engineering, Dec. 1962; D. M. Zall,
D. Fisher § M. D. G a m e r , Anal. Chem, 28, 1956, p. 1665
0-200 p p m
4 ,0 p p m
2% o f full scale
Iron, Total
Dissolved
Ferrous c o m p l e x w i t h T P T Z
Tech n i c o n A A II m e t h o d #109-71W
Ref: H e n r icksen, Arne, A u t o m a t i c M e t h o d for D e t e r m i n a t i o n
of Iron, " V a t t e n h y g i e n " , 22, May 1967, p. 108
0-0.1 pp m
0. 0 2 pp m
2 % o f full scale
IrOn, Total
Dige s t i o n with HC1 foll o w e d by d e t e r m i n a t i o n as d e s c r i b e d for
Total d i s s o l v e d iron
Ref: S t a n d a r d M e t h o d s , 13th Edition, p. 190
0-0.1 pp m
0 . 0 2 ppm
Determination
Method
Alkalinity
1.
Metlv-'l Orange; T e c h n i c o n
2,
AutoAnalyzer
II, m e t h o d # 1 1 1 - 7 1 W
2% of full scale
Table 1 (’
Continued)
AUTOANALYZER
D e t e r m ination
Method
Range
Sensitivity
Nitrite
D i a z o t i z a t i o n m e t h o d w h i c h couples with N - l - n a p h t h y l e n e diamine dihydrochloride.
T e c h n i c o n A A II; m e t h o d #120-70W, modified for linear
sensitivity.
Ref: S t a n d a r d M e t h o d s , 12th edition, 1965, p. 205
0-0.200 p p m
.004 p p m
2 % o f full scale
Nitrate
Same as N i t r i t e with C a d m i u m R e d u c t i o n column
T ech n i c o n A A II, m e t h o d #100-70W, m o d i f i e d for line a r
sensitivity.
0-0.200 p p m
.004 p p m
2% of full scale
Nitrogen, T o tal
Kjeldahl
D ige s t i o n with
and HgO catalyst followed b y A m m o n i a
d e t e r m i n a t i o n as d e s c r i b e d above, m o d i f i e d d i l u e n t r e a g e n t
to n e u t r a l i z e Kjel d a h l d i g e s t i o n mixture.
T ech n i c o n A A II, meth o d # 1 4 6 - 7 1 A
Ref. S t a n d a r d M e t h o d s , 13th edition, p . 244
0-5.0 p p m
Ortho-Phosphate
P h o s p h o m o l y b d e n u m blue c o m p l e x w i t h ascorbic acid reduction.
T e c h n i c o n A A II; m e t h o d # 1 5 5 - 7 1 W
Ref:
J. M u r p h y § J. P. Riley, Anal. Chim. Acta, 27, p. 30,
1962.
0-0.100 p p m
Phosphate, Total
Silicate
Sul fate
S a m e as O r t h o - P h o s p h a t e w i t h p e r s u l f a t e digestion.
M o d i f i e d S t a n d a r d Methods procedure: 13th edition,
p. 525, 1971.
Technicon A A II; m e t h o d #93-70W.
0 -0.100 p p m
A s c o r b i c acid r e d u c t i o n of sil i c o m o l y b d a t e c o m p l e x to
"M o l y b d e n u m b l u e "
Tech n i c o n A A II M e t h o d #105-71W.
0-20 p p m
Sulfate p r e c i p i t a t e d with b a r i u m at p H 2.5 chela t e d with
m e t h y l t h y m o l blue
Tech n i c o n A A II M e t h o d #118-71W
Ref:
Lazrus, A. L . , Hill, K. C., and Lodge, J. P., "A N e w
C o l o r i m e t r i c M i c r o d e t e r m i n a t i o n o f Sulf a t e Ion", A u t o m a t i o n
in A n a l y t i c a l C h e m i s t r y , T e c h n i c o n Symposia, 1965,
Mediad, 1966, pp. 291-293.
0-250 p p m
0.06
2 % o f full
scale
.002
2% o f full
scale
.002
2% of full
scale
0.4 p p m
2% o f full
scale
o.G ppm
^
scalc
Table 1 (Continued)
ATOMIC ABSORPTION
PARAMETER
WAVELENGTH
FLAME
COMM E N T S
Calc i u m
422.7 n m - v i s
(SLIT-4)
N itrous oxide and
acetylene
Dilu t i o n s w i t h 500 p p m N a + were 1:10.
The 2 inch b u r n e r turned 30° was u s e d due
to hig h c a l c i u m c o ncentration.
This
p r o v i d e d b e t t e r s t a b i l i t y and prec i s i o n .
S o d i u m d o p i n g was u s e d to r e p r e s s ion i z a t i o n
o f C a ++ in flame.
Magnesium
285,2 iun-uv.
(SLIT-4)
N itr o u s oxide and
a cetylene
S a m p l e t r e a t m e n t was the same as for calcium.
Sodium
589.0 nm-vis.
A i r and a cetylene
2" b u r n e r t u r n e d 90° to n o r m a l position.
Dilu t i o n s m a d e as n e e d e d w i t h D.I. water.
Pota s s i u m
766.5 nm-vis.
(SLIT-4)
A i r and a cetylene
•Red fil t e r u s e d to e l i m i n a t e r a d i a t i o n
s h o r t e r than 650 nm.
Standards doped with
50 p p m N a + to simul a t e as c l o s e l y as possible,
sample m a t r i x relat i v e to sodium.
Two i n c h
b u r n e r u s e d in n o r m a l position.
T able 1 (Concluded)
ATOMIC A B S O R P T I O N -
METALS
Parameter
Sample Preparation
Instrument Con ditions
Comments
C a d mium
E l e m e n t e x t r a c t e d into methyl isobutyl
ketone (MIBK) w i t h ammo n i u m p y r r o l i d i n e
d i t h i o c a r b a m a t e (APDC) at 2.8 pH.
E x t r a c t i o n r a t i o 10:1.
W a v e l e n g t h 2.29 n m (U.V.)
Air acet y l e n e flame
S tan d a r d b u r n e r head
Ref:
’
’
M e t h o d s for C o l l e c t i o n
a n d A n a l y s i s of W a t e r S a m p l e s
for D i s s o l v e d M i n e r a l s and
G a s e s " Book 5, U.S.G.S.
P u b l i c a t i o n C h a p t e r A1 1970
Copper
Same as c a d m i u m
W a v elength 325 n m (U.V.)
Air a c e t y l e n e flame
Stan d a r d b u r n e r head
Ref:
same as above
Lead
Same as c a d m i u m
W a v e l e n g t h 283 n m (U.V.)
A i r acet y l e n e f l a m e
Stan d a r d b u r n e r h e a d
Ref:
same as above
Manganese
Same e x t r a c t i o n as d e s c r i b e d for
cadmium e x c e p t p H adjusted to 6.0
W a v e l e n g t h 279 n m (U.V.)
Air acet y l e n e f l a m e
Stan d a r d b u r n e r h e a d
Ref:
same as above
Strontium
A q u e o u s sol u t i o n / N o e x t raction
460.7 n m (Vis)
A i r a c e t y l e n e flame
S tan d a r d b u r n e r h e a d
Ref:
same as above
Zinc.
A q u e o u s s o l u t i o n / N o ext r a c t i o n
214 n m (U.V.)
Air a c e t y l e n e flame
Stan d a r d b u r n e r head
Ref:
same as above
A Palmer counting chamber was used to enumerate the preserved algae.
The
samples were mechanically shaken for a minimum of ten minutes to provide a
homogeneous sample.
The phytoplankton within 20 fields at 400 X magnification
were counted on each of two separate slides.
In enumeration, a colony
and a
filament were each counted as a single unit.
The taxonomic keys which
were
used to identify the phytoplankton are:
Prescott (1970), Smith (1950),
Tiffany and Britton (1971), and Whitford and Schumacker (1969).
Benthic invertebrates were sampled using a standard Ekman dredge (15.2
cm x 15.2 cm).
A total of four graf>s were taken at each station to yield the
standing crop for approximately 0.1 square meters.
In November 1973, samples
were also collected using a standard Peterson dredge at Stations 2 and 6 .
Samples were washed through a U. S. Standard Sieve, Series No. 20, preserved
in 10% formaldehyde and returned to the laboratory for identification.
Samples
were again washed through a No. 20 sieve and organisms were separated from
sediments and detritus using sugar flotation.
Organisms were identified to
species when possible.
Hydrology Data
Unless otherwise noted, the hydrological data used in this report were
taken from unpublished monthly summary sheets prepared by the Jacksonville
office of the U. S. Army Corps of Engineers.
These summaries list the
daily
stage, rainfall rates, evaporation rates, discharges into the Lake and dis­
charges out of the lake.
Due to alterations in the drainage patterns of Taylor Creek and Nubbin
Slough which were not immediately reflected in the Corps' summaries, the
discharge for Nubbin SIough/Taylor Creek basins were obtained directly from
FCD hydrologic records.
Radar analysis of rainfall rates directly over Lake Okeechobee by the
Experimental Meteorological Laboratory, National Oceanic and Atmospheric Agency,
21
Miami, Florida have shown significantly lower rates for the Lake than for the
surrounding land area {Riebsame,et al_.,1974).
Since rainfall data in the
Corps' summaries were taken from land based gauges around the Lake, the gauge
data were reduced.
Although the radar data indicated the rainfall data rates
were up to 45% less over the Lake than as measured by land gauges during the
summer months, a 20% reduction was applied to the data since the radar study
involved only 45 days during the summer of 1973 and different meteorological
conditions prevailed during the other months.
For calculation purposes the total rainfall inputs and evaporation losses
were calculated based on the surface area of the Lake at the time of input
or loss.
These surface areas were taken from the stage/area table for the
Lake prepared by the Corps of Engineers.
Loading rates of nitrogen and phosphorus to Lake Okeechobee were calculated
for each inflow
including rainfall.
The results of chemical analyses at each
major inflow were averaged over monthly intervals and applied to the total
monthly flows.
During periods of high flow, the chemistry averages were based
on four data points, while during periods of low flow they were based on 1 or
data points.
Loading rates for rainfall input were calculated based on average
water quality of rainfall reported by Joyner (1972).
Monthly water budgets for the Lake were calculated to coincide with the
intervals between routine water sampling of the Lake.
all inflows
2
including rainfall.
These budgets itemized
The outflows were only divided into
evaporation losses and total surface discharge from the Lake.
The monthly
budgets were then surmied over six and twelve month intervals to provide the
water budget base necessary to calculate material budgets.
The material budgets used the previously calculated loading rates to
estimate inputs.
Losses of materials were calculated monthly from average
lake water quality data and total outflows during the monthly intervals.
Lake
storage of materials was based on average Lake water values of materials in
question and total volume of the lake at the beginning and end 6f each budget
period.
Lake volumes were estimated from the same tables mentioned for Lake
surface area.
Materials budgets were calculated for six month periods to
coincide with the wet (June through October) and dry (November through May)
periods.
These six month budgets were then summed to provide yearly budgets.
Statistical Analysis
Standard statistical techniques were used to calculate mean and standard
deviation statistics for various parameters.
When necessary these means were
tested for statistical differences using the assumption that the variances
were equal and known.
Linear regression analyses between parameters used the method of least
squares.
The slope of the calculated regression lines were tested to determine
if they were significantly different from zero using the one tailed Student's
"t" test.
Coefficients of determination, r , were calculated for the regression
lines (where r is the estimated correlation coefficient).
Other Methods
Effective Wind Displacements, EDI, were calculated for each sampling
date according to the method of Ayers,et_ aJU,{1958).
Wind speed and direction
data necessary for these calculations were obtained from the Clewiston Field
Offices of the U. S. Army Corps of Engineers.
Five to seven days of record
(prior to the sampling date) from three anemometers were used in the calculations.
The anemometers were located near Okeechobee City, Port Mayaca and Belle Glade.
The calculated EDI values for each anemometer were then averaged to give a
single EDI value for the Lake.
RESULTS
Limnetic Chemistry
The results for selected chemical parameters measured at Stations 1
through 8 for Lake Okeechobee from January 1973 to May 1974 are summarized in
Table 2 .
This table shows the monthly mean surface and mean bottom values for
temperature, dissolved oxygen (D .0.)* Secchi disc readings, total phosphate,
ortho-phosphate, total Kjeldahl nitrogen, nitrate, sodium, calcium, and
chloride.
The standard deviation of the means and number of analyses have also
been included.
The results of all field and laboratory analyses of samples
collected from the Lake
are listed in Appendix A.
Although Table 2 shows mean values for both surface andbottom samples,
the difference between these means for any month is usually not significant.
Only temperature and D.O. showed statistically significant differences using
the Student's "t" test at the 90% significance level.
The significant dif­
ferences in temperature and D.O. may be due to the fact that all samples were
collected during daylight hours and, therefore, reflect the effects of surface
warming and biological oxygen production.
The fact that the remaining para­
meters showed no significant stratification indicates that the Lake was well
mixed vertically at all
times of the year.
The mean values for major ions (sodium, calcium,
Okeechobee showed moderate variations with time.
and chloride) in
Lake
For all three ions the lowest
mean values were recorded in October 1973, which was also the month of highest
Lake stage.
The higher mean values tended to occur during periods of low Lake
stage, such as May and June of 1973 and April 1974.
During periods of rising
Lake level the standard deviations of these means also increased indicating
greater variability in the data for those months.
TABLE
2
S E L E C T E D C H E M I C A L P A RAMETERS
LAKE O K E E C H O B E E - M O N T H L Y W A N S
1973
Jan. S urface
Jan.
Bottom
Temp.
o C.
D.O.
m g /1
Secchi
cm
T-P04
mg/1 P
°-P04
m g / 1 I’
TKN
mg/1 N
N03
mg/ 1 N
Na
mg/1
Ca
mg/1
Cl
mg/1
X
S
N
14.3
9.8
0.3
7
37
36
7
0 .088
0.004
0.036
7
0.002
1.60
0.24
7
0.080
0.063
6
57.6
0.9
7
49.9
2.4
7
89
5
7
X
0. 096
0.066
7
58.6
49.3
N
13.9
0.7
7
2.1
6
2.8
6
99
27
7
X
18.5
9.8
1.44
0. 7
N
1.1
8
57.7
1.5
58.6
s
X
16.6
s
0.6
8
s
Feb. Surface
Feb. B o t t o m
N
Mar. S u rf a c e
X
Apr. S urface
M a y S urface
=
7
1 .72
0.25
7
0.068
0.02 7
0. 009
0.007
0.12
0. 114
0.097
8
8
7
8
9.3
0.3
0.073
0.034
0. 007
0.005
1.53
0.29
0.118
0.096
8
8
8
8
8
0.046
0.14
0.003
0 .002
1.34
8
8
0.10
8
0.002
0.001
8
0.057
0.026
0.011
6
8
9.8
40
29
8
60
33
7
0.147
0. 095
7
54.2
51.1
2.4
1.0
3
8
8
8
1.28
0.07
0.129
0.079
53.4
2.5
50.9
1.3
8
8
8
8
0.008
1.42
0. 75
0.046
0.081
53.7
9.4
46.8
7.5
8
8
8
8
8
8
0.078
0.034
8
0.011
53.9
47.7
7.1
0.079
0.036
8
8.5
0.049
0.017
N
8
7
8
2 1 .2
8 .3
0.4
7
0.4
8
X
S
N
20.8
X
25.8
7.8
s
0.8
8
0.2
8
Mean value, S =
32
19
8
8. 2
0,4
8
8
32
27
6
S t a n d a r d Deviation,
8
8
0.6
s
85
n
8
1.5
X
8
2.2
8
58.5
2.3
20. 2
1. 2
8
0. 004
57.5
3.1
s
N
X
0.002
X
0.4
7
0.096
0. 044
7
9.6
0.4
N
N
Apr. B o t t o m
7
22.8
1.2
8
s
Mar. B o t t o m
0.6
N =
1.49
0.73
'8 .
0.045
0 . 108
8
10. 2
8
0.004
0.003
1.82
0.28
0.075
0.051
59.7
1 .8
8
8
8
0.013
8
N u m b e r o f data points
8
8
56.5
1. 1
7
84
4
8
88
88
3
8
83
13
8
83
14
8
99
3
8
TABLE 2
(CONTINUED)
1973
Temp.
°C
May Bottom
X
25.3
7.8
0. 0 8 2
s
0.2
8
0.042
0.005
0.004
N
0.6
8
8
8
X
28.7
7.0
34
0.2
20
N
0.6
8
0.076
0.046
7
0 .005
s
Y
27.7
s
6 .8
0.4
N
1.2
8
X
29.6
7.3
70
s
0.8
8
0.6
8
34
8
28.7
0.5
6.7
s
N
8
X
S
N
29.8
0.7
X
S
N
29.2
0.3
Sept. S u r f a c e X
29.2
7.9
69
s
0.8
8
23
N
0.6
8
X
28.2
s
0. 2
8
7.1
0.7
-Tune S urface
June B o t t o m
July Su r f ace
N
Ju l y B o t t o m
Aug. Su r f ace
Aug. B o t t o m
Sept. Bot tom
X
N
X
D.O.
m g /1
8
8
-
S e cchi
cm
7
8
1. 1
8
8.5
114
0.2
8
38
8
-
8
S =
0 -PO 4
mg/1 P
TKN
mg/1 N
NO 3
mg/1 N
Na
m g /1
Ca
mg/1
Cl
mg/1
1.56
0.078
0.056
60..1
1 .7
55,6
99 '
4
0.66
8
8
8
0. 003
1.62
0 . 22
0. 027
0.028
8
8
■
8
0. 09 9
0. 02 7
8
0.005
0.004
1.77
0.28
0.031
0.034
8
8
8
0.028
0.013
8
0. 00 2
1.48
-
0 . 18
0.008
-
8
7
8
0. 026
0.013
8
0.002
0.008
-
8
1.46
0.28
7
0. 04 0
0.018
8
0. 005
0. 005
1.23
0.14
0.018
0.015
8
8
8
0. 0 5 2
0. 0 2 3
8
0.004
0.004
1. 21
0.44
0.017
0.014
8
8
8
0. 04 3
0.005
1.39
0. 0 1 7
56. 0
0.023
0. 005
0.25
0.019
8
8
8
8
10
8
0.042
0.005
0. 004
1.43
0.27
8
8
0. 021
0. 020
8
06 .2
10
8
0. 017
8
8
mean value,
T-P04
mg/1 P
-
standard deviation,
N =
8
n u m b e r o f data points
1.2
7
8
59.1
2.9
S
52 .4
3.0
59 .2
50 . i
3.1
90
58.4
2.4
50.9
8
8
93
6
8 .
59. 2
2.7
49.8
3.3
8
8
56. 1
5.8
44.2
5.7
2.8
8
8
57.2
5.2
8
8
4.0
8
44. 5
6. 1
8
88
5
8
6
8
95
4
8
88.6
7.1
8
90
5
8
40.8
86
8.1
8
16
41.5
7.9
8
8
86
15
8
TABLE 2
(CONTINUED)
o -p° 4
TJCv
X03
mg/1 N
Na
Ca
Cl
mg/1 P
mg/1 P
mg/1 N
mg/1
m g /1
mg/ 1
82
0.037
0 . 002
20
8
0 .008
8
0.008
0.009
51,5
7.1
38.0
6.9
74
8
8
8
0.049
0.002
0.012
-
1 .50
0. 30
47,S
9.5
36.3
7.1
8
0, 0 1 0
0. 011
8
8
8
8
11
8
0.034
0.008
0.008
0.005
1.43
0.31
0.082
0.072
52.7
41.9
5.4
76
9
8
8
8
8
8.4
0.9
0.037
0.008
0.009
0 .005
1.25
0. 34
&2.5
5,7
41.9
4.3
8
8
8
8
0.083
0.076
8
8
8
9.1
0.4
0.040
0 . 006
0. 076
52.2
1.7
48.0
0. 004
1.64
0.13
0.129
0. 012
8
8
8
8
8
0. 037
0.014
0.005
0.003
1.54
0.41
0.134
0.077
52.0
8
8
8
8
Temr>
D.O.
Sccchi
T-P0
1973
°C
m g /1
cm.
Oct. S u r face
X
S
NT
27.5
7.4
0.4
X
27.4
s
N
0.8
8
X
22.3
Oct. Bottom
Nov. S urface
s
1.0
8
1. 2
N ■ S
Nov. B o tt o m
Dec. Surface
Dec. B o tt o m
N
21.2 '
0.2
8
X
15. 3
s
N
0.2
8
X
15.0
X
s
s
N
X
=
7
mean value,
8
7.0
0.4
9.2
0.4
8
8
9.2
0.2
8
S =
62
23
8
}
s t a n d a r d deviation,
N =
1.44
0.22
8
-
8
n u m b e r o f data points
6,0
8
2.1
8
8
2.2
8
47.6
1.7
8
10
8
73
8
82
15
8
83
5
8
82
3
8
T a ble 2
[CONCLUDED)
S
N
Feb. Surface
Feb. Bottom
Apr.
Bottom
Surface
Apr. B o t t o m
x"
19.4
8.4
1.0
0.8
N
16
X
8.0
0.8
N
18.9
1.3
16
X
21.7
8.7
2.0
1.8
N
16
X
S
N
20.8
1.8
M a y Bottom
X
=>
2.6
2
1.78
0.15
0.088
0.081
54.1
1.3
49.5
87
0.002
1.6
1
0. 054
0.025
0.006
0.006
1. 93
0. 38
0 . 102
0.077
52.9
3.4
43.8
4.8
85
4
0.067
0.033
0.005
0.005
2.03
0.44
0.089
0, 078
54.4
1.5
44.3
3.6
86
0.055
0.019
0.004
0. 004
1.84
0.38
0.068
0.057
53.1
2.4
46.2
3.4
86
2
0.072
0.038
0.005
0.005
2 .03
0.51
0.141
0.264
52.9
3.2
45 .7
86
2
0.063
0.007
0.007
2.23
0.46
0.152
0.096
60. 7
8 ,8
49.3
2.4
98
0. 021
0.066
0.024
0.007
0 .006
2.22
0. 48
0.196
0.165
58.1
4.5
49.3
2. 3
97
14
0.027
0.006
0 .004
0. 004
1.23
0.07
0.133
0.182
58.4
2.7
56.9
1.3
95
4
0.028
0.007
0. 004
0.004
1.20
0.087
0.084
56,5
3.8
D ~ .D
0.10
93
3
0.001
0.030
0.005
0.003
mg/1 P
0.003
1.66
X
25.1
6.9
s
1.8
2.1
45
29
41
16
7.8
1.9
2.0
4
16
N
16
X
24.6
s
M a y Surface
0.5
Ca
m g /1
49.4
0.14
Na
mg/1
53.9
1.3
TKN
m g/1 N
8
s
Mar.
8.0
s
s
Mar. Surface
21.-4
0.3
Cl
mg/1
87
no3
mg/1 N
0 .097
0.070
-t-po 4
mg/1 P
0.034
0.009
0
A
Secchi
cm
54
17
o
Jan. B o t t o m
D.O..
mg/1
8.7
0.5
01
1
1974
Jan. Surface
Temp.
UC
X 22. 1
s
0.5
N
8
1.8
N
16
X
S
N
25. 2
0.5
X
S
N
24.5
31
16
7.2
1.8
7. 9
47
0.6
21
12
8
0.2
8
mean values
S =
T
0
0.4
standard deviation
N =
n u m b e r o f data points
I .0
Variations with time of the monthly mean values of several parameters
in Table 2 and some additional parameters are illustrated graphically in
Figures 7 and 8 .
The lines between successive values in the figures are not
intended to represent the rate of change for each value but have only been
included to facilitate reading the graphs.
A summary of the field data excluding pH values is shown as monthly means
for all eight lake stations in Figure 7.
The pH values measured for Lake
Okeechobee varied only slightly between 8.2 and 8.4 and therefore were not
included in Figure 7.
The mean Secchi disc readings in Figure 7 varied from less than 30 cm in
April 1974 to more than 100 cm in August 1973.
As a measure of water clarity
the Secchi disc readings indicate clearer water in the summer months than in
the winter months.
The average water temperature extremes measured during the study was 15°C.
The highest average water temperature (29.5°C) was measured during August 1973.
The lowest temperatures measured occurred in January of 1973 when the mean water
temperature dropped to 14.1°C.
The surface temperatures as shown in Figure 7
were higher than bottom values although the difference was usually less than
1°C.
The greatest difference between surface and bottom temperatures, 2.5°C,
occurred in March 1973.
Figure 7 also shows the mean dissolved oxygen (D.O.) concentration for
surface and bottom samples.
The D.O. generally tended to be at or near saturation
with respect to temperature and varies inversely to temperature.
The highest
D.O. measured, 9.7 mg/1, occurred in January 1973 when the lowest temperature
occurred.
The lowest average D.O. measured was 6.9 mg/1 in July 1973 one month
before the highest temperature.
for August 1973.
Unfortunately, no oxygen values were available
As with temperature, the D.O. curves show higher surface
CENTI METERS
TEMR
D O. m g / ?
DC
MMHO/cm
f\>
<0
I9 7 4
I 973
values than bottom values.
There were two exceptions to this trend.
In
November 1973 the average surface dissolved oxygen was several tenths of a
mg/1 less than the average bottom value.
There was a temperature inversion
in March 1974 when surface temperatures were slightly lower than bottom
temperatures.
The plot of average specific conductivity for each sampling date (Figure
7) indicates that the highest value, 740 ymhos/cm, occurred in June 1974 while
the lowest value, 550 umho/cm, occurred in March 1974.
Specific conductivity
of freshwater is a general measure of dissolved solids, although there are no
fixed relationships between the two.
Since this study included analysis of
major ions, the discussion of dissolved solids
will be based on the ionic
analysis rather than specific conductivity.
The average concentration by month of the major nutrients, phosphorus
nitrogen, are shown in Figure 8 .
and
Both total phosphate {T-PO 4 ) and inorganic
ortho-phosphate (0 -PO 4 ) are reported as mg/1 phosphorus, while total Kjeldahl
nitrogen (TKN), nitrate (NO3) and ammonium (NH4 ) are reported as mg/1 nitrogen.
The total phosphate values include inorganic, dissolved organic, and particulate
phosphorus fractions.
TKN values include free ammonium as well as dissolved
organic and particulate nitrogen but do not include nitrate or nitrite.
values are generally very low and have not been included.
that the concentration scale for TKN
shown.
Nitrite
It should be noted
is 1/20 of the scale for the other species
The values shown in Figure 8 are mean values of results from both surface
and bottom samples.
All parameters plotted in Figure 8 show minimum values during the late
summer and fall of 1973.
Nitrate concentrations had the greatest variation
ranging from less than 0.01 mg/1 to almost 0.20 mg/1.
There was a constant
drop in average nitrate nitrogen in the Lake from March 1973 to July 1973.
From July to October 1973 the average concentrations of nitrate nitrogen were
less than 0.02 mg /1 and many individual values were below the analytical limits
of detection which was 0.004 mg/1.
The values for nitrate increased almost an
order of magnitude from October to November 1973.
nitrate persisted in the Lake until May 1974.
Relatively high levels of
The data for 1974 is incomplete
at this time but there appears to be evidence for another period of low nitrate
values during the summer of 1974.
The other nitrogen species in Figure 8 show much less variation.
values were lowest in August 1973 and highest during April 1974.
TKN
Since the TKN
values seem to parallel the nitrate values, the large variations in nitrate
nitrogen do not appear to be due to conversion of nitrogen from one species to
another.
Ammonia values also seem to
parallel TKN but much of the variation in
ammonia has been lost because many results for ammonia
analysis were below
the
the
0.01 mg /1 limits of detection.
Total phosphate values in Figure 8 show maximum values during both the
spring of 1973 and 1974.
This pattern was similar to that of the TKN although
the relative magnitude of the peaks was reversed.
Total phosphate showed the
higher peak values in the spring of 1973 while the higher TKN values occurred
in the spring of 1974.
It is difficult to know what pattern the ortho-phosphate species followed
because there is relatively little variation in the ortho-phosphate values.
Many of the ortho-phosphate analyses were below the analytical limits of
sensitivity which were normally 0.002 mg/1 P.
ortho-phosphate values cannot be
ship between ortho-phospahte and
Since the true variation in
shown there is no way to assess the relation­
total phosphate.
33
The seasonal means for selected chemical parameters at sampling Stations
1 through 8 are summarize^ in Tables 3 and 4.
Mean values for the same para­
meters have also been calculated for the entire study period and are shown in
Table 5.
All the means except Secchi disc readings have been calculated using
both surface and bottom values.
Comparison of Table 3 and Table 4 indicates that the concentrations of
nitrogen in the Lake were lower during the wet season (May to November) than
during the dry season (November to May).
The average nitrate concentration
showed the greatest difference between wet and dry seasons.
Among the individual stations, the greatest decreases in nitrate concen­
trations occurred at Stations 4, 6 , 7, and 8 .
The remaining four stations
also had decreased nitrate values during the summer months, but the differences
were much less.
TKN values were consistently lower in the wet season than in the dry
season but the difference between seasonal averages was not as great as for
nitrate.
No significant variations occurred in the ortho-phosphate values.
The
total phosphate values in Tables 3 and 4 do not show consistent differences
from wet to dry seasons.
Stations 1, 2, 7, and 8 had higher average total
phosphate concentrations during the wet months in comparison to the dry months.
The remaining stations showed slightly reduced values for the wet period in
comparison to the dry period.
Generally, the major ions show higher values during the May to November
period than during the November to May period.
Although the months from May to
November are months of greatest rainfall and inflow into the Lake, the stages
during this time are low with a tendency to increase until the dry season
TABLE
3
SELECTED CHEMICAL PARAMETERS
LAKE O K E E C H O B E E - SEAS O N A L MEANS
May 19 73 - N o v e m b e r 1973
Location
Secchi
cm
65
32
St a t i o n 1
X
S
N:
63
40
St a t i o n 2
X
S
N
53
33
St a t i o n 3
X
S
N
Station 4
X
S
N
48
17
5
Station 5
X 111
s 38
N
6
68
Station 6
X
s
N
75
SI
St a t i o n 7
X
s
N
66
S tation 8
X
S
N
Lake
X
s
N
69
39
45
X =
6
12
0.068
0.050
6
11
0.056
0.034
11
6
0.064
0.034
12
0.029
0.015
12
0. 049
24
5
0.20
12
0.041
0 . 023
12
6
0.052
0.023
23
5
m e an value
T-P04
mg/1 P
0.080
0.030
12
0. 054
-
94
S =
°-P04
mg/1 P
0.007
0.006
12
0.004
0. 003
12
TKN
mg/1 P
1.61
0.37
12
12
1.52
0.48
1.66
-
0.41
0.002
0. 0 0 1
12
0. 0 0 2
0 . 001
12
0.005
0.004
12
0.005
0.004
12
0. 0 0 2
0.001
0.024
0.033
12
12
0.002
12
N03
mg/1 N
0.017
0.016
12
0.017
0.018
12
1.50
0. 30
12
0.016
0. 014
12
1.53
0.17
12
1. 35
0.25
0.019
0.020
12
0,050
0.055
12
12
1.27
0. 39
0.038
0.031
12
12
1.50
0, 32
0.031
0.056
Na
mg/1
49.6
Ca
m g /1
41.0
0.002
12
10. 2
12
11. 2
12
0.005
58.9
4.0
46.5
7.7
12
12
58.0
4.1
47.5
NO 2
mg/1 N
0.005
0.002
12
0.005
0.002
12
0.006
0.003
12
0.007
0.005
12
0.005
0. 0 0 2
12
91
9
12
12
12
56.1
43.4
9.4
89
17
12
12
58. 8
1.7
48.8
5.4
90
12
12
N =
-'
2.89
92
5
8.8
12
46.5
8.4
94
n u m b e r o f d a t a points
12
12
49.2
56.7
7.0
96
2.58
0.54
12
57.0
0.006
0.004
96
12
2.74
0.15
0.008
0.007
0.027
0.036
96
2.91
0.27
88
2.0
12
1.49
0. 37
94
12
47.6
2.9
56.4
0.004
0.004
96
0.40
12
0.20
12
0.005
12
2.88
6
12
0.002
12
12
12
90
9
48.3
5.6
12
2.92
0.43
8
12
58.7
2.9
12
12
90
12
10. 2
12
Aik
meq/ 1
2.35
0.67
12
8.6
12
8. 2
12
s t a n d a r d deviation
Cl
mg/1
77
18
4
12
2.91
0.24
12
12
88
11
2 .77
0.44
96 ■
96
TABLE 4
SELECTED CHEMICAL PARAMETERS
LAKE OKE E C H O B E E ■
- S E A S O N A L MEANS
N o v e m b e r 1973 - May 1974
S e cchi
cm
s
51
23
N
8
X
S
39
9
N
8
X
St a t i o n 1
Station 2
Station 3
■
X
39
s
IS
N
8
X
o-P04
mg/1 P
TKN
mg/1 N
no3
mg/1 N
NO 2
mg/1 N
Na
m g /1
Ca
m g /1
Cl
m g /1
0.050
0.017
0 . 003
1 .90
0.51
0.021
0.004
53.9
3.0
45. 8
6.7
87
2.66
0.3.1
20
20
8
20
53.8
3.4
20
46.8
4.1
88
2.67
0. 32
20
20
57.3
8.4
47.2
4.3
93
16
20
20
20
56.4
5.7
47.5
4.2
90
20
20
53. 0
46.8
6.0
20
6.0
20
20
54.5
1.9
48.4
4.2
87
4
20
20
20
55. 1
2.9
49.6
4.1
87
5
20
20
20
20
54.4
4.2
47. 8
87
5.6
10
20
20
20
2. 73
0.52
19
47.5
88
5.1
160
10
20
0.043
0 . 018
20
0.061
0.026
20
s
32
13
St a t i o n 4
N
8
70
13
Station 5
X
S
N
X
s
40
19
St a t i o n 6
N
8
0. 0 2 2
20
53
29
0.029
0.014
Station 7
X
S
N
25
Sta t i o n 8
X
S
N
X
44
22
64
s
N
Lake
=
mean value
0.066
0.031
20
0. 032
0.014
20
8
0.056
20
8
0.071
0.032
6
20
8
S =
Aik .
meq/1
t-po4
mg/1 P
0.002
20
20
1.90
0.55
0.003
0.003
20
0.004
0. 004
20
20
20
20
0.57
20
20
20
0, 014
0. 005
20
20
0 . 006
0.005
20
20
1.60
0. 33
20
1.94
0.49
19
0. 051
0 .006
1.81
0.027
160
0.005
0.50
159
160
stand a r d deviation
N =
0.047
0.070
20
1.67
0.47
0.006
0.005
0. 109
0.048
20
1.70
0.34
-
0. 095
0.039
20
2.01
0 . 002
0.072
0.066
20
1.79
0.54
0.005
0.004
0.022
20
0. 217
0.107
-
20
0.004
-
20
0.008
0 .011
20
0. 005
0.005
20
0.005
0.003
20
0.005
0.003
20
20
0.182
0.124
17
0.001
20
0.004
0. 119
0.004
0 . 080
0.002
20
20
0.107
0. 131
159
0.005
0. 005
160
n u mber of data points
54. 8
5.0
160
S
8
20
83
9
ibO
20
20
2.69
0. 33
20
2.74
0.36
20
2.78
0.46
20
2. 78
0.34
20
2.81
0. 36
2.73
0. 39
159
TABLE
5
SELECTED CHEMICAL. PARAMETERS
LAKE O K E E C H O B E E - STUDY MEANS
January 1973 - June 1974
Station 1
X
45
29
17
s
42
25
i r>
J.O
r\
O P
A /*\
H U
rr <-i
IN
34
17
17
0. 071
0.034
40
0.005
0.003
40
80
34
18
0.034
0.017
40
0 .002
0.001
48
23
17
0.054
0.011
0.022
s
Station 2
N
X
- J
. *
O C c l L l U l L
T
J
>T
X
s
Station 4
N
X
s
St a t i o n 5
N
X
S
Station 6
N
mg/l P
0.004
0. 005
38
TKN
mg/l N
1.73
0.47
38
0. 023
38
0.054
0.033
39
0.004
0.003
40
1.71
0.52
40
0.059
0.060
40
0. 064
0. 031
0.003
0.003
1. 74
0.47
0.071
0.056
40
0
1
t-po4
mg/1 P
0.061
0.025
38
*3
O
Secchi
cm
X 53
S 27
N 17
NO,
mg/l N
0.004
NO 3
mg/l N
0.022
a
r\
0.002
38
0.004
0.002
40
0. 0 0 6
0.008
1v
n
Na
mg/l
50.9
8.4
38
Ca
mg/l
44.2
9.5
38
Cl
mg/l
81
15
38
Aik
m e q /1
2.52
0.51
38
55.9
4.2
40
48.0
5.9
40
80
40
2.81
0.36
40
57.3
6.5
48.4
6.4
93
17
/in
'70
-ru
~r
1.82
0.53
40
0.083
0.068
39
0.005
0.004
40
SI.2
4
40
49.0
5.2
39
90
1.57
0.35
40
0.033
0.053
40
0.005
0.004
40
54.6
7.3
40 '
46.5
7.4
40
86
12
1.52
0.39
40
0.151
0.116
40
0 .004
0.008
40
56.4
2.5
40
49.4
4.9
.40
1.36
0.47
40
0.123
0.140
38
40
56.4
3.0
40
49.2
3.9
39
40
0. 0 0 2
40
0.004
Station 7
N
18
40
0.006
0.005
40
Station 8
X
S
'N
37
24
17
0. 072
0.034
40
0.006
0.006
40 .
1. 76
0.45
37
0.105
0.096
40
0. 005
0.005
40 ■
55.6
5.6
40
49. 3
6.9
40
51
s 33
N 139
0.054
0.031
34.8
0.005
0.005
350
1.64
0.47
346
0.079
0.109
546
0. 005
0.004
350
56.1
48.2
6.9
347
X
s
71
44
0.034
0.021
X
Lake
X =
m e a n v alue
S =
8
standard deviation
N =
0.002
n u m b e r o f data points
6.1
349
8
40
40
88
5
40
88
4
40
2.80
0.35
40
2.85
0. 33
40
2.72
0.45
40
2.85
0.29
40
2.79
0,30
38
89
2.86
8
0 .42
39
40
89
11
349
-
37
(November to May) when they begin to fall again.
Thus, the major ions tend to
be most concentrated during the period of low and rising lake stages.
The only
exceptions to this are Stations 1 and 5 which show the opposite trend.
These
stations are the closest to major inflows into the Lake and are rapidly
affected by the reduced ionic concentrations of these inflows.
The average water clarity (Secchi disc reading) at each station showed
consistent seasonal differences.
Every station recorded greater Secchi disc
readings during the wet period as compared to the dry period.
The seasonal means for each station presented in Tables 3 and 4 indicate
r
that the seasonal variation in water chemistry data based on Lake-wide averages
as shown in Figures 7 and 8 are also evident at the individual stations.
The means of all sampling data for Stations 1 through 8 shown in Table 5
indicate that significant areal variations in water chemistry data exist within
Lake Okeechobee.
Stations 5 and 7 had the best water clarity based on Secchi disc readings.
The average Secchi disc reading at these two stations was almost double those
at the other stations.
These two stations also had the lowest average total
phosphate concentrations.
Stations 4 and 8 had the poorest water clarity and
highest total phosphate concentrations.
high average nitrate levels.
These two stations also had moderately
The highest nitrate values were recorded at
Stations 6 and 7 with the lowest values at Stations 1 and 5.
Stations 1 and 5
also had the lowest average major ion concentrations.
Trace Metals
The results of trace metal analysis on water samples collected from Lake
Okeechobee in June 1974 are shown in Table 6 .
The analysis for trace metals
on samples collected in January 1973 has been omitted due to incomplete data.
TABLE
6
TRACE M ETAL A N A L Y S I S
LAKE O K E E C H O B E E
June 1974
All Results in \ig/\
S tation
Cadmium .
C o pper
T otal Iron
Manganese
Strontium
Lead
Zinc
13.3
11. 6
15.0
55.0
18.4
15.0
Top
Bottom
< 1.8
< 1.8
6.0
320
340
<5.0
<5.0
860.0
820.0
Top
Bottom
< 1 .8
< 1.8
5.0
7.0
350
410
<5.0
850. 0
790. 0
11.6
3.
Top
Bottom
<1.8
< 1.8
4.0
4.2
360
470
870.0
890.0
< 1 0 .8
<10.8
30.0
25.0
4,
Top
Bottom
< 1.8
< 1.8
7.0
7.4
430
380
895.0
800.0
< 1 0 .8
< 1 0 .8
20.0
Top
Bottom
<1.8
< 1.8
5.4
5.0
280
250
715.0
790.0
< 1 0 .8
< 1 0 .8
15.0
Top
Bottom
< 1.8
< 1.8
3.4
5.0
240
310
455.0
15.0
65.0
888.0
1 1. 6
20.0
Top
Bottom
< 1 ,8
<1.8
3. 8
3.4
210
260
695. 0
840.0
< 1 0 .8
< 10.8
26.5
15.0
Top
Bottom
<1.8
< 1.8
4.2
5.8
380
420
800.0
800.0
<10.8
<10.8
20.0
1.
2.
5.
6.
7.
8.
5.0
50.0
10.0
25.0
39
All results shown in Table 6 , except for iron, are dissolved trace metals.
The iron analyses were performed on unfiltered sample aliquots which had first
been digested with hot hydrochloric acid.
The results indicate relatively low levels of heavy metals except for
Strontium.
The high Strontium concentrations are not unexpected due to the
relatively high calcium and magnesium levels in the Lake.
There does not
appear to be any significant variation in trace metal concentrations from
station to station.
Total iron and to some extent copper were more concentrated
in the bottom samples in comparison to surface samples.
This may be due to
increased particulate matter in the bottom samples.
Primary Productivity
Primary productivity is the rate at which carbon is fixed by the primary
producers.
In Lake Okeechobee this involves mainly phytoplankton.
Elements
which are generally measured are gross primary productivity, net primary
productivity and respiration.
Gross primary productivity is the total amount
of carbon fixed during photosynthesis.
Net primary productivity is the amount
of carbon fixed after allowances have been made for losses due to respiration
and other metabolic processes occurring in the plant cell during photosynthesis.
Monthly average primary productivities are shown in Figure 9.
Monthly primary
productivities by station are shown in Figure 10 and listed in Table 7.
In Lake
Okeechobee the net primary productivity was essentially the same as the gross
primary productivity (Figures 9 and 10).
The instances in which the net produc­
tivity was larger than the gross productivity may be accounted for by the insensi­
tivity of the Winkler oxygen method.
15% of the gross primary productivity.
Respiration generally represented less than
In the discussion which follows "productivity"
will be used to mean gross primary productivity, ergo, net primary productivity.
PRIMARY
PRODUCTIVITY
CORRECTED
BY
DA-V
LENGTH
l m g C / m 3 /doy)
40
F i g ur e 9
LAKE OKEECHOBEE
1973 MONTHLY
AVERAGE PRIMARY PRODUCTIVITY
PRIMARY
PRODUCTIVITY
C C R H El C T E il
BY
DAY
LENGTH
( mg/m
/day)
41
JAN-
FEB.
Figure 10
MAR
A P R
M A Y
JUNE
J U L Y
AUG.
S E F- V.
O r,
T,
NOV.
L A K E O K E E C H O B E E 1973 P R I M A R Y
P R O D U C T I V I T Y C O R R E C T E D B Y DAY
L E N G T H BY MONTH
TABLE 7
LAKE OKEECHOBEE 1973
IN SITU PRIMARY PRODUCTIVITIES {LIGHT AND DARK BOTTLE OXYGEN METHOD)
Date
Primary Productivity (mgC/m 3 /da.y)
_____ Corrected for day length
Station
Gross
Net
Respiration
1/16/73
1/16/73
5
6
682
434
496
434
186
0
2/6/73
2/6/73
5
6
868
434
806
496
62
0
3/5/73
3/5/73
1
4
1054
2170
1240
2294
0
0
4/19/73
4/19/73
4/12/73
4/12/73
1
4
5
6
930
1054
1488
992
930
558
1550
1054
0
620
0
0
5/3/73
5/2/73
5/9/73
5/9/73
1
4
5
6
1240
1240
496
930
1302
1302
434
806
0
0
62
124
6/4/73
6/4/73
6/5/73
6/5/73
1
4
5
6
1612
1054
744
1984
1116
930
744
1984
558
124
0
0
7/12/73
7/10/73
7/10/73
1
5
6
1860
186
868
1860
310
806
0
0
62
8/9/73
8/10/73
8/10/73
1
5
6
2294
434
1116
2418
372
1054
0
62
62
9/12/73
9/13/73
9/13/73
1
5
6
1674
1302
2294
1674
1178
2108
62
186
186
10/11/73
10/12/73
10/12/73
1
5
6
1240
1674
1426
1302
1488
1426
0
248
62
11/15/73
11/15/73
11/20/73
11/20/73
1
4
5
6
1054
1364
868
248
992
1240
806
310
124
186
62
0
43
Three peaks in average primary productivity were recorded in 1973:
March
2600 mg C/m^/day; June, 2200 mg C/nvVday; and September, 2800 mg C/nvVday.
The
fall peak (September) in primary productivity was highest, followed by the spring
(March) and summer (June) peaks.
The productivity records of the individual stations (Figure 10) indicate
significant areal variation. The data for the spring peak is incomplete
that the timing and magnitude of this peak is uncertain.
productivities of 1700 and 3500 mg C/m^/day, respectively,
so
Stations 1 and
in March.
4 had
In April,
Stations 5 and 6 had values of 2400 and 1600 mg C/nvfyday, respectively,
Smaller peaks in productivity were observed in June at Stations 5 and 6 ,
The productivity at Station 6 was 3200 mg C/m3/day and 1200 mg C/m3/day at
Station 5.
The highest productivities of 1973 were recorded in August, September and
October.
Maximum productivity occurred at different times in different parts of
the Lake.
Station 1 showed a gradual increase in productivity from April to a
peak (3700 mg C/m^/day) in August, then a gradual decrease through November.
Station 6 showed an abrupt increase in productivity from July to a maximum
(3700 mg C/m^/day) in September, then an abrupt drop to a minimum in November.
Station 5 showed a less abrupt increase from July to a peak productivity (2700
mg C/m^/day) in October, then a drop in November.
it appears that
September.
From the shape of the curve,
the true peak at Station 5 may have occurred sometime late in
Logistical problems prevented primary productivity measurements at
Station 4 from July through October.
However, productivity measurements were
taken at Station 4 in November and this station had the highest productivity (2200
mg C/m^/day) for that month.
Logistical problems also prohibited measurements
in Decmeber 1973 at all stations.
During 1973, the highest productivty( 3700 mg C/m^/day, was recorded at
Station 1 in August and Station 6 in September.
C/m 3/day, was recorded at Station 5 in July.
The lowest productivity, 300 mg
The average primary productivity
for the Lake, for all productivty stations in 1973, was 1864 mg C/m /day.
Certain stations were generally more productive than others.
productivities for the stations for 1973 were as follows:
The average
Station l t 2300 mg
C/m 3/day; Station 4, 2200 mg C/m 3/day; Station 6 , 1700 mg C/m 3 /day; and Station
5, 1400 mg C/m-tyday.
The north and north-central stations (1 and 4, respectively)
were the most productive.
The south-central station (6 ) was on an average
slightly less productive than
the north-central station.
The westernmost
station (5) was the least productive of all the sample stations.
Algal Populations
A listing of the algae observed in Lake Okeechobee is given in Table 8 .
The distribution of the signficant algal groups is shown in Figure 11.
The blue-green algae (Cyanophyta) were the dominant algae of Lake Okeechobee.
The most frequently occurring
blue-greens were Oscillatoria s p ., Lyngbya contorta,
Microcystis aeruginosa, and Microcystis incerta.
The filamentous Oscillatoria
s p . and L. contorta were the dominant blue-green algae at most sites throughout
the year.
M. aeruginosa, the massive buoyant colonial blue-green, formed thick
scums 2-5 mm thick, on the surface of the water in late fall.
Stations 1 and 5 had the highest average percentage of blue-green algae
(Figure 11) and these stations also had a much more diverse blue-green algal
flora than did the other lake stations.
The most common green algae (Chlorophyta) were the unicellular flagellated
types, including Ch.lamydotnonas s p . , Carteria cordiformis, Chlorogonium sp. and
TABLE 8
Lake O k e e c h o b e e P h y t o p l a n k t o n O b s e r v e d in 1973
C y a n o p h y t a (Bluegreen Algae)
A n a b a e n a sp.
A n a a y s t i s s p (Gloeotheoe)
Chroococcus turgidus
C h v o o a o c c m sp.
C oe t o s p h a e x ’
i u m sp.
G o m p h o s p h a e r i a sp,
Lyngbya contorta
M e r i s m o p e d i a sp.
Microcystis aeruginosa
Microcystis incerta
O s c i l l a t o r i a sp.
S p i r u l i n a sp.
C h l o r o p h y t a (Green Algae)
Ankistrodssnrus fa l ca t u s
Cartsria cordiformis
C h t a m y d o m a n a s sp.
C h l o r o c o c c u m Sp
C h o d a t e l l a ( L agerhemia) s u b s a l s a
Closteridiien l u n u l a
Closterium gracile
C l o s t e r i u m k u t z i n g i i f. s i g m o i d e s
Closterium venus
C l o s t e r i u m sp.
C o e l a s t m o n sp.
Dictyosphaerium ehrerbergianum
Dictyosphaerium pulchellum
Golerikinia r a d i a t a
L e p o c i n c l i s sp.
M o u g e o t i a sp.
O o c y s t i s sp.
Pandorina morum
Pediastrum boryanum
P e d i a s t r u m d u p l e x var. gracilimwrt
Pediastrum simplex
P e d i a s t r u m tetras
Phacotus lentiaularis
Platydorina caudata
Polyedriopsis spinulosa
Pseudotetraedron negleetvm
Pteromonas aculeata
Quadriguta closteroides
Scenedesmus abundans
Scenedesrms acuminatus
Scene.desmus a r c u a t u s var. p l a t y d i s
Scenedesmus bijuga
Scenedesmus dimovphus
Scenedesmus quadricauda
Schroederia setigeva
Staurastrum cuspidatwn
S t a u r a s t r u m sp.
Tetraedron gracile
Tetraedron muticum
Tetraedron trigonum
Tetrastnan staurogeniaeforme
.f r e u b a r i a c r a s s i s p i n a
C h r y s o p h y t a ( Y e l l owgreen Algae)
M a l l o m o n a s sp.
Amphora s p ,
C a m p y l o d i s c u s sp.
C o a c o n e i s sp.
C o s a i n o d i s e n s sp.
C y a l o t e l l a sp.
C y l i n d r o t h e c a sp.
Cyrtbella sp.
D e n t i c u t a sp.
F r u s t u l i a sp.
G y r o s i g m a sp.
M e l o s i v a sp.
N a v i c u l a sp.
N i t z c h i a sp.
P i n n u l a r i a sp.
S u r i r e l l a sp.
S u r i r e l l a sp.
S y n e d r a sp.
T d b e l l a r i a sp.
Vinoflagellata
Ceratium hirundinella
Glenodinium gyimodinivm
Euglenophyta
E u g l e n a a cu s
Euglena gracilis
E u g l e n a s p i v oi d es
E u g l e n a vi v i d u s
P h a c u s t or t a
Phaeus triqueter
Trachelomonas volvocina
T r a c h e l o m o n a s sp.
47
#y»- ,*-•> w t . M H
LEGEND
CYANOPHYTA
CHLOROPHYTA
C HR Y S O P H Y T A
EUSLENO PHYTA
(A )
(B}
<C)
(D )
\
62.2(A)
10. 2 (B)
7.0 (C)
0 . 6 (D)
76.0(A)
I 8.0 (B)
S T A .2#
4. 8 (C)
1. 2 (D)
7 2 .1 (A )
S T A . 3 * 2 1 9(B*
6 -0 ( 0
Jj
8 3.5 CA)
■12.0 (B)
STA5#
4 . 2 (C)
0.3(D )
75.8 (A)
18.9 (8)
S T A .8 # 5.4(C )
rv
V
5T A .
.
6#
74.0 (A)
1 9 , 7 (B)
S T A . 4 # S 3 (c )
73.6 (A)
23.0 (B)
3.4 (C)
o.4 (D)
70.5(A)
22.7 (B )
ST A. 7 # 6 . 4 ( C )
0 . 4 (p j
'V
A
/
j3
■ .-O
\ 1
\
U
V . .>
v
/
if
Figure II L A K E O K E E C H O B E E 1973
A V E R A G E P H Y T O P L A N K T O M C O M P O S I T I O N BY STATI ON
'* '
.jm t •'*>Vil****
r
"iHPtUW» fiir.--
' «■)*.
ft *rs ■
>
. :w
!
j
several, as yet unidentified, species.
These algae dominated the spring pulse
which was first observed at Stations 3 and 4.
The flagellated unicellular types
of green algae were more numerous and generally more common than desmid types
throughout the Lake.
Desmids accounted for a relatively smaller proportion of the green algae
population.
Observed most frequently were several species of Closterium,
Pediastrum, Scenedesmus, and Staurastrum.
They were found most frequently in
samples taken at Stations 1 and 5.
Green algae made up a larger portion of the algal populations at Stations
3, 6 , and 7 than at the other Lake Stations {Figure 11).
Diatoms (Chrysophyta) were present in relatively small numbers throughout
the year.
The most common representatives, Coscinodiscus s p ., Melosira s p .,
Tabellaria s p ., Gyrosigma s p ., Navicula s p ., Amphora s p ., and Synedra s p ., were
most important in the winter and spring and were absent in the summer.
The
diatom flora was generally more numerous and diverse at Stations 1, 5, and 7
near the periphery of the Lake.
Only two Dinoflagellate species, Ceratium hirundinella and Glenodinium
gymnodinium, were observed in Lake Okeechobee.
mainly at Station 5.
£. hirundinella was observed
(5. gymnodinium was observed once in live samples collected
during non-routine sampling in the north and north-central part of the Lake.
The euglenoids (Euglenophyta) made up a very small part of the Lake
phytoplankton, but may be of particular significance.
were observed:
Euglena acus,
The following euglenoids
gracilis, E. spiroides, E. viridis, Phacus torta,
£.* triqueter and Trachelomonas volvocina.
These organisms were present at
Stations 1 and 5 in June, Station 1 in September, Station 7 in October, and
Stations 2 and 6 in November.
Euglenoids were generally found during periods of
49
peak discharge into the Lake and their presence may be linked to high nutrient
inputs.
Seasonal Phytoplankton Variation
The seasonal variation in average phytoplankton densities and compositions
are shown in Figure 12.
Table 9 lists the phytoplankton densities by month.
Appendix C shows the phytoplankton density and composition by station for each
sampling date.
Two pronounced maxima in phytoplankton densities were observed, one in the
spring and one in the fall.
Changes in phytoplankton populations from January
to June 1973 were abrupt and dramatic.
Phytoplankton densities nearly doubled
between February and March. The peak in phytoplankton densities in March, April
and May constituted the spring pulse. Succession of algal groups was apparent
during this period.
The increase in phytoplankton in March was due primarily to
the increase in the number of small, flagellated, unicellular, green aglae
(Chiorophyta).
Green algae were succeeded in April by diatoms (Chrysophyta) and
large populations of filamentous blue-green algae (Cyanophyta).
Decreases in blue-
green algae and diatom populations accounted for the overall decline in phytoplankton
populations in May.
An increase in green algae in May made the decline less acute.
In June, the number of phytoplankton dropped dramatically to values of less than
1/3 of the maximum values observed in April.
The spring pulse began abruptly in March and ended abruptly in June, whereas
the fall pulse was marked by a gradual increase in numbers beginning in July,
a peak in September, and a gradual decline through December.
The increase in
phytoplankton densities during the fall pulse was not as great as during the spring
and was due mainly to increases in the population of blue-green algae.
Initially,
most of the blue-green aglae were filamentous, but later a colonial blue-green
P H Y T O P LA N K T O N
UNITS / m l
50
Figure
12
L A K E O K E E C H O B E E 1973 A V E R A G E PH Y TO PL A N K ­
TON D E N S I T I E S AND COMPOSITI ON BY M O N T H
TABLE
St a t i o n
9
LAKE OKEECHOBEE
,J
F
19 73 PHYTOPLANKTON'
A
M
D E N S I T I E S PHYTOPLANKTON UN ITS /
M
J
J
A
S
ML)
0
N
D
Ave.
1
*
if
2652
7038
9108
10350
6210
14697
9310
6270
7790
5130
9310
8907
2
5175
6580
6417
8901
12006
4140
8901
6840
12160
6080
7980
7790
7629
3
7520
3572
23598
11799
14076
3105
4968
6460
19285
64 6 0
5890
3800
8741
4
4550
8084
18216
11799
14904
4968
6417 12540
9690
9500
8170
4940
9086
5
11592
8272
4554
7659
3519
6003
3933
6550
12160
17480
13110
6270
8820
6
3933
3384
7659
12420
13869
3726
414
3990
7600
4560
3800
3040
5436
7
2070
1128
3312
13455
7038
621
0
2850
4560
4370
3420
3810
8
3948
7332
13041
18216
13455
1656
5175
7030
4180
10830
6840
6270
9017
5542
512 3
10764
11928
11437
3985
5796
6626
9274
8431
6911
5605
Monthly
Averages
*
*P a lmer C o u n t i n g C h a m b e r u s e d - 20 fields at 4 0 0 X on two slides.
filament were each counted as a single unit.
**Sample lost
A colony and a
algae became dominant.
This shift to a colonial blue-green population caused
some sampling difficulties.
The buoyant colonial blue-greens formed a surface
scum which persisted in much of the Lake from September through December, and in
November, covered all Stations except 1 and 5.
Because samples were taken at
0.5 m, the reported phytoplankton numbers and per cent composition may not be
representative of the conditions which existed in the surface waters.
Beneath
the surface scum was a population of small green flagellates, which comprised a
large percentage of green algae reported in the fall of 1973.
The observed
increase in green algae from September through November may indeed represent a
true shift in algal populations.
The blue-green algae, although more obvious,
may not have comprised a significant proportion of the overall algal population.
Figure 13 indicates significant areal variation in phytoplankton densities
by month at Stations 1 , 4, 5, and 6 .
Station 1 had relatively constant phyto­
plankton densities, with a major peak in algal numbers occurring in July and
minor peaks occurring in May and October.
The peaks in May and July were due
mainly to increases in blue-green algae, whereas the peak in October was due to
green algae.
Peaks in algal numbers at Station 4 occurred in March, May and August.
The major peaks, March and May, were dominated by small flagellated green algae,
and filamentous blue-green algae, respectively.
The peak in August was due
completely to increases in blue-green algae.
At Station 5, minor peaks were recorded in April and June, with a major
peak occurring in October.
The increase in phytoplankton numbers from July
to a peak in October was due to an increase in the number of blue-green algae.
The number of green algae during this period was relatively large and constant.
Major and minor peaks in algal numbers at Station 6 occurred in May and
September, respectively.
Both were due to increases in blue-green algae
FIGURE 13
LAKE OKEECHOBEE 1973 PHYTOPLANKTON
D ensities at Stations 1, 4 , 5 and 6 by Month
populations.
This station had the highest average green algae population of any
productivity station.
The range in Lake average phytoplankton densities was 4000 to 12000 phyto­
plankton units/ml in July and April, respectively.
Using individual station
data, the range was from zero at Station 7 in August, to 24000 phytoplankton
units/ml at Station 3 in March.
Benthic Invertebrates
A description of the bottom sediments collected during the benthic
sampling at each station is presented below.
Station
1
2
3
4
5
6
7
8
Bottom Types
Sand, some mud
Sand, mud, shell, some marl
Mud, some shell, sofne detritus
Mud, some shell
Sand, some shell, some detritus
Marl, pockets of mud
Peat, shell, rock, some marl
Sand, mud, some detritus
The results of benthic sampling appear in Table 10.
The most common
benthic invertebrates were oligochaetes, the amphipod Gammarus fasciatus,
and the chironomid Pentaneurini s p .
The highest number of organisms, 2562/nr,
was collected in July at Station 7.
The lowest was 50/m^ at Station 2 in
February.
Diversity Indices (Shannon and Weaver, 1963) were calculated for each
station.
Stations were ranked in order of descending average diversity indices
as follows:
3, 4, 1, 2, 7, 8 , 5, and 6 .
Mud bottoms were most productive,
followed by sand, peat, and marl.
It is interesting to note that the amphipod, Apelisa tenuicornis and
the
isopod, Sphaeroma terebrans (organisms also found in brackish water [Pennak, 1953]),
55
Hi 1 I
*■- il, -T
:.0
cn/_
■
J
‘
SLL-Q
"J
s/z
•m Pre
S / ll
t
’06l‘
T
IO
; - ; l: re
01/:. ■ .
n/T T
Lr;
4> - 1
Cl. t-~.
U-J
jr-i rn
T. r ,
H
___________5. 0
i.r,
01/-. ■
D -j <~J
9 /:
O —J ■••J
S / IT
o i/ ;
>n ^ rt
q / r .n
: H /T1
:->S‘
J9 'T
J
l/l
'1
r;
'r
d
■<
‘
9/:
t i/ i r
ri
-r _u -r
1-0
!•i
< : i/ : ’-r
- / < -r i
I
| 6/ [ 1
:‘
^ '6 6 0 " I
r
■1
CO1
\
.-t
h :i'9'n
PEt7"I
I/.
\1
”j
r-’
*;£6*0
JOY thi 1
I
tor-1
J
■ST
"i
ri
J
‘ 0|K '[
<"1
Of
I6t-'’
1
—t----
i
■^T
i
LT1
U ' r /' i ■r> ^ <"•f
:
LiZ :0
'•E
i
i-i
z>
5s;r r
ro
cOS' T
irj
j f i,-1 ;
Ll us;; •[
T
f i/ l ! ' I ,.:j
?T
.i
i8
iioi,- ;
;
o
■H
j ' ’ /T !
...j ;o
1}
r ~
!
i
o .n
r~-
I'-:
i
■
!
i
h’
kiri
were found at Station 6 .
Also of interest is the larger concentration of
Corbicula leana at the southernmost station.
This clam is common in the agri­
cultural canals south of Lake Okeechobee (Marshall, 1972, unpublished data).
Loading Calculations
The total discharge, average water quality and material loadings of major
inflows to Lake Okeechobee are given in Table 11.
The percentage figures for
both discharge and loading data are the percentages of total water or material
attributed to each
inflow.
The average concentration of nitrogen, phosphorus,
chloride and calcium for each inflow was calculated by dividing the total
element input by the total water input.
The chemistry data for all major
inflows and outflows of the Lake can be found in Appendix B.
Rainfall and the Kissimmee River were the largest contributors of water to
Lake Okeechobee during the year from May 1973 to May 1974.
The rainfall rates
were lower than those reported in the past since they represent corrected gauge
data as described previously.
The Kissimmee River discharge was somewhat less
than the previous 10 year average of 1,177,000 AF/year.
Pumpage rates at S-2
and S-3 were also below the six year (1963-1969) average rates of 218,000 AF/year
and 101,000 AF/year, respectively.
Since 1973 was the first year that Nubbin
Slough had discharged the combined Taylor Creek/Nubbin Slough drainage basin, it
is impossible to determine if it was above or below normal.
Table 11 shows that the agricultural canals had the highest concentration
of total nitrogen of all inflows to the Lake.
Their nitrogen loadings represented
32% of the total of all inflows despite the fact that they contributed only 9%
of the water.
Harhey Pond Canal and Indian Prairie Canal also had
high nitrogen
concentrations but their flows were too low for them to cause high loadings to
the Lake.
All other inflows had total nitrogen concentrations below the average
TABLE
W ATER QUALITY ' OF M AJOR
1lif low
D ischarge
Acre-Ft
0
x 10-3
'0,.
Total N
Av, Cone,
Tons
mg/l N
II
INFLOWS T O LAK1 i OKEECHOBEE MAY 19 73 - MA Y 1974
'"0
Total P
Av. Cone.
mg/l P
Tons
0
.
'0
Chloride
A v . Cone
mg/l
Cl Tons
Rainfall
1013.8
34
0.73
1006.5
16
0.038
53.8
10
0.4
K i s s i m m e e River
1017.3
34
1.39
1922.8
30
0.084
117.2
21
N u b b i n Slough
203.8
7
1.89
523.2
8
0.766
212.4
N.N.R. 6 Ilills.
Canal (S-2)
178.1
6
5.92
1435.2
22
0.168
Miami Canal
(S-3)
76.7
3
5.95
621.0
10
H a r n e y Pond
149.6
5
2.30
481.3
42.6
1
2.61
144.8
5
1.55
3008.3
95
Indian Prair
Fish e a t i n g
Creek
Total
Lake Average
0
551
<1
10.92
25,061
25
39
55.3
15,326
39.5
7
140.8
0.133
14.1
2
7
0.324
69.7
151.4
2
0.29 8
304.7
5
0.123
6446.0
1.71
0
.
0.53
%
730
<1
18.1
15,112
23
15
21.2
5,873
9
34,101
34
104.0
25,186
38
119.0
12,415
12
106.2
11,086
17
13
17.7
3,599
4
17.1
3,485
5
17.3
3
23.0
1,332
1
37.6
2,177
3
24.2
4
33.5
6,593
7
8.5
1,667
2
548,2
0.053
Calcium
Av. Cone,
mg / l C a Tons
98,978
88.6
65,316
56.0
Lake concentrations.
Both rainfall and the Kissimmee River contributed a
high percentage of the total nitrogen loading to the Lake because of large
water volume input rather than high concentrations of total nitrogen.
The average total phosphate concentration in Nubbin Slough was more than
10 times that of the Lake average.
Thus, even though this inflow contributed
only 7% of the water to the Lake during 1973-1974, it was responsible for 39%
of the total phosphate.
Harney Pond Canal and Indian Prairie Canal also had
high average total phosphate levels.
The discharge rate for Harney Pond Canal
was high enough in this case to produce 13% of the total phosphate input.
Although the agricultural canals had moderately high phosphate levels, their
contribution to the total loadings was relatively minor.
As in the case with
nitrogen,the largest water inputs (Kissimmee River and rainfall) also were
significant sources of total phosphate because of high inflow rates, rather than
high concentration levels.
Except for the agricultural canals, all inflows to the Lake had lower
major ion concentrations, as measured by the chloride and calcium values in
Table 11, than existed within the Lake.
The major contributors of dissolved
salts to the Lake were the agricultural canals with well over 50% of the total
input.
Again, due to the high percentage of water input, the Kissimmee River
was the second largest contributor of dissolved salts even though its concen­
tration values were well below those of the Lake.
The monthly loading rates of nitrogen and phosphorus to Lake Okeechobee by
the Kissimmee River, Nubbin Slough, agricultural canals, and rainfall are shown
in Figures 14 through 17, respectively.
These inflows represent over 80% of
the total nitrogen and total phosphorus discharged into the Lake from May 1973
70/350
60/300
50/250
40/200
30/150
2 0 /1 0 0
10/50
MAR
MAY
I 974
APR
01
o
N U T R I E NT
LOADINGS
NUBBIN
TO
LAKE
SLOUGH
OKEECHOBEE
'
ro /35 o
1973 — 1974
60/300
N -AC FT
30/150
P/TONS
40/200
TONS
5 0/250
x 10
20/100
FIGURE
10/50
15
M AY
JUNE
JULY
SEPT.
AUG.
197 3.
OCT.
NOV.
DEC
JAN.
MAR
FEB.
1974
APR.
oj
70/350
60/300
20/100
FIGURE
1 0/50
»L
MAY
JUNE
JULY
A UG .
SEPT.
19 7 3
0 CT.
NOV.
DEC.
JAN.
FEB
MAR.
19 7 4
APR.
N - A C F T x 10"
30/150
P/TONS
40/200
TONS
5 0/ 2 5 0
oj
0>
w
60/300
2 0 /1 0 0
FIGURE
10/50
17
MAY
APR.
N -A C F T xIO '
30/(50
P/TONS
40/200
TONS
50/250
w
to May 1974.
The split scales for the Figures have phosphorus tonnage to the
left and both nitrogen tonnage and acre-feet of discharge to the right.
The Kissimmee River discharged the majority of its nutrient load to Lake
Okeechobee during the period from May to September (Figure 14).
The major
portion of its nitrogen load was organic or particulate nitrogen with only a
small percentage entering the Lake as inorganic nitrogen.
The phosphorus load
was almost equally divided between ortho-phosphate and particulate or organic
phosphrous.
As can be seen from the ratio
of discharge to element loadings,
the concentration of phosphate seems to have peaked in the early part of the
high discharge period (July) whereas nitrogen concentrations steadily increased
from July to September.
Nubbin Slough was the single largest source of phosphate for Lake Okeechobee
during the study period.
Figure 15 shows that the majority of this phosphate
entered the Lake as inorganic ortho-phosphate.
As with the Kissimmee River it
also appears that the highest concentration of phosphate occurred during the
early part of the peak discharge although the highest discharges occurred earlier
in Nubbin Slough than in the Kissimmee River.
The relative amounts of phosphorus
discharged into the Lake at Nubbin Slough are impressive.
In July alone, Nubbin
Slough dumped 57 tons of ortho-phosphate into Lake Okeechobee which is enough
to more than double the entire Lake's average concentration.
The extremely large quantities of nitrogen supplied to Lake Okeechobee by
the agricultural canals occurred predominately during the month of July 1973
(Figure 16).
A much larger percentage of inorganic nitrogen was discharged into
the Lake by these canals compared to other inflows.
The predominate phosphate
form was as ortho-phosphate rather than organic and particulate phosphate, as was
the case for the Kissimmee River.
The 700 tons of nitrate nitrogen discharged
into the Lake by these canals during the month of July is equivalent to over
0.150 mg/T nitrogen for the entire Lake or almost twice the average Lake concen­
trations.
The rainfall loading data (Figure 17) show no variation in concentrations
because yearly average concentrations of nitrogen and phosphorus were used in
the calculation. Comparison of rainfall loadings to the previous three loadings
does show that rainfall inputs of nutrients are significant over a longer period
of time than the surface inflows.
Rainfall was responsible for the majority of
nutrient inputs to the Lake for the entire dry season from November to May.
Budget Calculations
The water budget for Lake Okeechobee from May 1973 to May 1974 is
Table 12.
The time period was chosen to include one complete cycle of
dry months.
3,008,300 AF.
shown in
wet and
The total measured inflow of water during the budget year was
Since the itemized inflow is similar to those used in the loading
calculations, the percentage figures for each inflow are the same as shown in
Table 11.
The total measured outflow from the Lake was 3,032,500 AF.
2,152,200 AF or 70% was lost by evaporation.
Of this total
The remaining 30% of the water
losses were primarily due to water supply releases to the Glades agricultural
area, Caloosahatchee River, Stj Lucie Canal and West Palm Beach Canal.
The net volume change claculated from the itemized budget is -24,200 AF or
-0.1 foot of stage.
The stage record is, however, considerably different.
The initial lake stage in May 1973 was 12.40 m.s.1. and the
May
1974 was 11.46 m.s.l.
final lake stage
in
This is a net stage differential of -0.96 feet or
-346,000 AF net volume differential.
The discrepancy between stage records and
itemized water budgets is currently under investigation by the FCD but
may be
65
TABLE
12
LAKE O K E E C H O B E E W A T E R B U DGET
M a y 7, 1973 to M a y 10, 1974
Item
CFS
Acre - F e e t X 10 ‘ 3
2,876.0
Initial S tage (12.40 msl)
Inflows:
S -65E
Is t o k p o g a Canal (C-41A)
Total Kissimmee River
N u b b i n Slough
N.N.R. § H i l l s b o r o Canal (S-2)
M i a m i Canal
'
H a r n e y Pond Canal (S-41)
Indian Prairie Canal (E-40)
Fi s h e a t i n g Creek
O t h e r Surface Inflows
*Rainfall (30.1 Inches)
1,147
257
1,405
282
246
106
205
58
200
252
830.6
187.2
1,017.3
203.8
178.1
76.7
149.6
42.6
144.8
181.6
1,013.8
3,008.3 :
Total Inflows
Outflows:
Total Surf a c e Outflows
Ev a p o r a t i o n
+
1,408
880.3
2,152.2
Total O u t f l o w s
3,032.5
Endi n g S t a ge (11.46 msl)
2,530.0
A Vol u m e
- 346.0
(Ending - Initial Stage)
C o m p u t e d A Volume
(Total I nflows-Total Outflows)
Er ror in C o m p u t e d A Volume
*Rain g auge value r e d uced 20% b a s e d on r a d a r rainfall
d a t a (Riebsame et a l ., 1974)
-
24.2
321.8
due simply to the sensitivity of the methods employed in collection of hydrological
data.
Material budgets for Lake Okeechobee are shown in Tables 13, 14, and 15, and
are, of course, based on the water budget in Table 12.
The initial and ending
storage values represent the amount of material in solution at the beginning and
end of the budget period.
Computed storage is the initial storage plus the total
inflows minus the total outflows.
The "other sinks" represent the difference
between computed storage and ending storage.
The budget for the major ions (Figure 13) indicates that more sodium,
calcium and chloride entered the Lake during the year than can be accounted for
by outflows or ambient Lake concentrations.
Approximately 50% of all incoming
material must be accounted for in other sinks.
The possible other sinks for the
comparatively unreactive elements such as sodium and chloride are very limited
in natural systems.
Calcium may be precipitated out of solution as calcium
carbonate, which is a distinct possibility in Lake Okeechobee.
However, the large
discrepancy in the water budget may be the principle reason for the large and
unaccounted for major ion sinks.
The validity of the two nutrient budgets in Tables 14 and 15 are also affected
by the poor balance in the water budget.
Both the six (Figure 14) and 12 month
(Figure 15) budgets show considerable loss of nutrients to other sinks.
nutrients, the possible sinks other than outflow are numerous.
For
For inorganic
nutrients, other sinks can imply conversion to particulate and organic forms by
primary producers.
Additional nutrient sinks include ingestion by primary consumers,
losses to littoral zones, sedimentation of detrital material, atmospheric losses
(denitrification), and, for phosphate, precipitation and adsorption.
Comparison of the six month budget to the full year budget shows that the
majority of the nutrient inputs took place during the wet season, but that most
67
TABLE 13
Maj or Ion Budget M a y 1973 - May 1974
Initial Storage
AF
xicr3
Ca
Tons
Na
Tons
Cl
Tons
2,876
210,433
225,296
371,974
Inflows
Rainfall
1,013.8
731
596
552
K i s s i m m e e R.
1,017.3
15,112
16,451
25,061
Nub b i n Slough
203.8
5,873
8,335
3 5,326
H a r n e y P ond C.
149.6
3,485
2 ,097
3,599
42.6
2,177
842
1,332
178.1
25,186
25,216
34,101
76.7
11,086
8,904
12,415
F i s h e a t i n g C.
144.8
1,667
3,653
6,593
Total Inflows
2,826.7
65,317
66,094
98,979
275,750
291,390
470,953
56,948
66,702
78.403
218,802
224,688
392,550
192,340
184,711
325,844
26,462
39,977
66,706
Indian P rairie C.
N.N.R.
§ Hills C (S-2)
M i a m i C. (S-3)
Initial Stor a g e
+ Total Inflows
T otal Outflows
880.3
C o m p u t e d Storage
E n d i n g S t o rage
O t h e r Sinks
2,530
TABLE
14
LAKE O K E ECHOBEE
N u t r i e n t Budget M a y 1973 to Nov.
I nitial Storage
1973
AF
X I 0 “3
T-P 0 4
o-po4
Total N
NO 3
Tons P
Tons P
Tons N
Tons N
2876
312.9
15.6
6907.6
297.3
Inflows
R a i nfall
846.8
44.9
13.8
817.7
278.7
K i s s i m m e e R.
910.9
1 1 0 .2
53.4
1701.9
48.9
N u b b i n Slough
195.7
206.9
161.4
505.0
35.9
H a r n e y P ond C.
146.5
69.4
54.6
475.8
43.3
42.4
17.2
13.1
151.1
2.8
164.4
37.3
30.5
1376.9
484.0
Mi ami L (S-3)
72.6
12.5
7.3
609.2
311.6
Fisheat:Ln£ C.
142.9
23.8
15.8
301.0
3.1
Total Inflows
2522.1
522.7
349.9
5938.6
1208.3
835.6
365.5
12846.2
1505.6
24.2
1.0
637.7
18.6
811.4
364.5
12208.5
1487.0
188.0
41.8
7431.5
433.5
623.4
322.7
4777.0
1053.5
Indian Prairie C.
N.N.R. Q Hills.
C. (S-2)
Initial Stor a g e
+ Total Inflows
Total Outflows
296.4
C o m p u t e d S t o rage
E n d i n g Storage
O t h e r Sinks
3840
TABLE 15
LAKE O K E E C H O B E E
N u t r i e n t Budget M a y 1973 to M a y 1974
Initial S t o rage
AF
T-P04
X1CT3
Tons P
2876
312.9
O - PO.
4
Tons P
Total N
no3
Tons N
Tons N
15.6
6907.6
297.3
Inflows
Rainfall
1013.8
53.8
16.7
1006.5
333.7
K i s s i m m e e R.
1017.3
117.2
57.2
1922.8
69.5
Nub b i n Slough
203.8
212.4
165.7
523.2
40.6
H a r n e y P o n d C.
149.6
69.7
54.7
481.3
43.9
42.6
17.3
13.1
151.4
2.8
178.1
39.5
33.0
1435.2
488.8
76.7
14.1
8.5
621.0
312.9
F i s h e a t i n g C.
144.8
24.2
16.2
304.7
3.2
Total Inflows
2826.7
538.2
365.3
6414.5
1296.3
380.9
13322.1
1593.6
Indian P rairie C.
N.N.R.
^ Hills. C.
Miami C.
(S-2)
(S-3)
.
Initial Storage
+ Total Inflows
-
851.1
Total O u tflows
880.3
63.9
5.8
2152.3
118.4
787.2
375.1
11169.8
1475.2
96.3
13. 8
4555.6
378.5
690.9
361.3
6614.2
1096.7
Co m p u t e d S t o rage
E n d i n g S tor a g e
O t h e r Sinks
2530
of these nutrients were apparently removed from the Lake water within six months
by means other than outflow.
That is, the majority of the incoming nutrients
are accounted for in other sinks rather than ending storage.
The losses to other sinks for both organic and total forms of nitrogen
and phosphorus for both the six and twelve month budgets are at least 80% of
the total inputs.
In the case of total phosphates, losses to other sinks were
actually greater than inputs, implying a reduction in ambient concentrations.
For the budget year, 85% of the total phosphate and 50% of the total nitrogen
available to the Lake were retained in other sinks.
Regression Analysis
The results of regression analyses for selected parameter pairs are shown
in Table 16.
The assumed dependent variable in Table 16 is listed to the left
of its corresponding independent variable.
The symbol "*11 indicates that the
slope was significantly different from zero for a 95% one-tailed test; while
"**" denotes significance for a 99% one-tailed test.
The coefficients of
determination for each significant regression are also shown in the table as "r2
values.
The nutrient parameters (total phosphate, ortho-phosphate, TKN and nitrate)
were assumed to be dependent on several physical and biological parameters
including turbidity (Secchi disc readings), wind stress, primary productivity
(PPR) and phytoplankton densities (CCT).
Displacement Index (EDI).
Wind stress is reported as Effective
The biological parameters were in turn assumed to be
dependent upon physical factors.
Since several relationships were suspected to be reciprocal, the inverse
of the physical and biological parameters were correlated with the nutrient data
Five sets of data were used in the regression procedure.
One set included
71
T A B L E 16 LAKE O K E E C H O B E E 1973
Regr e s s i o n Analysis for Lake O k e e c h o b e e Data
* S i g n ificant t
Jan . - Dec.
** (.37)
** (. 10 )
**S i g n i f i c a n t t^oi
J a n . - May
** (.55)
June - Oct.
**
(.14)'
(.13)
t (r2 )
Stations
2,3,4,6 ,8
**
(.59)
**
(.24)
T-P04
t-po4
T-P04
T -P04
T-P04
T - P 04
T - P 04
vs
vs
vs
vs
vs
vs
vs
SDD
EDI
PPR
CCT
1/SDD
1/PPR
1/CCT
O-PO4
O-PO4
O-PO4
O-PO4
O-PO4
O-PO4
O-PO4
vs
vs
vs
vs
vs
vs
vs
SDD
EDI
PPR
CCT
1/SDD
1/PPR
1/CCT
*
(.05)
** (.14)
TK N
TKN
TKN
TKN
TKN
T KN
T KN
vs
vs
vs
vs
vs
vs
vs
SDD
EDI
PPR
CCT
1/SDD
1/PPR
1/CCT
** (. 21 )
* (.05)
** (.26)
**
(.18)
(. 12 )
**
**
(.42)
(.19)
** (.32)
**
**
(.31)
**
(.46)
N0^
NO 3
N 0 1;
XO,
NO 3
NO,
NO3
vs
vs
vs
vs
vs
vs
vs
SDD
EDI
PPR
CCT
1/SDD
1/PPR
1/CCT
* (.06)
** (.08)
**
**
(.14)
(. 20 )
** (. 10 )
**
*
(.13)
(.28)
SDD
SDD
SDD
SDD
SDD
SDD
vs
vs
vs
vs
vs
vs
EDI
PPR
CCT
1/EDI
1/PPR
1/CCT
** (.26)
*
* (.05)
** (.30)
* (.09)
★
PPR
PPR
PPR
PPR
PPR
PPR
vs
vs
vs
vs
vs
vs
SDD
EDI
CCT
1/SDD
1/EDI
1/CCT
★ (.04)
** (.07)
** (.69)
*
*
**
(. 10 )
*
(. 10 )
* (.08)
** (.15)
*
**
(. 11 )
**
(.32)
*
(. 11 )
(.06)
it i(
**
(.35)
(. 10 )
(.17)
(.13)
(.41)
**
**
(.18)
(.42)
**
(.40)
**
(. 22 )
**
*
(.23)
(.58)
(. 10 )
**
(.42)
**
**
(.32)
(.27)
**
(.42)
*
(.23)
1k
(.17)
*
(.23)
** (.56)
*
** (.14)
(.17)
(.08)
(.28)
(.25)
(.05)
* (. 10 )
** (.15)
Stations
5, 7
1, ■
**
(.18)
* (.29)
** (.40)
(. 21 )
all data for parameter pairs for all stations.
limited to:
The other sets of data were
l)winter values only (January 1973 through May 1973); 2) summer
values only (June 1973 to October 1973); 3) data from stations with soft
sediments (Stations 2, 3, 4, 6 and 8 );
and 4) data from stations with hard
sediments (Stations 1, 5, and 7).
Although the correlation analysis
showed that many relationships were
statistically significant, the coefficients of determination, r^ values, indicate
that in most cases less than 50% of the variability in the dependent variable
can be "explained" by a linear relationship with the independent variable.
Table 16 indicates that the variations in the nutrient parameters were
generally dependent on water clarity as measured by Secchi disc readings and
occasionally dependent on biological activity as measured by gross primary
productivity and/or phytoplankton densities.
The statistically significant
relationship between nutrient parameters and turbidity is not unusual since
turbidity is a function of both inorganic suspended matter and cellular material.
Either of these forms of particulate matter could be expected to contain signifi­
cant quantities of nitrogen and phosphorus and affect the levels of both the
particulate and dissolved forms of nutrients.
Further analysis of Table 16
indicates that this turbidity (Secchi disc reading) is dependent upon wind stress.
This dependency suggests that the turbidity in the Lake is due primarily to
resuspension of sediment material rather than phytoplankton concentrations.
The regression analyses did not indicate any strong relationships between
biological parameters and either chemical or physical parameters.
Primary
productivity and phytoplankton densities undoubtedly affect the nutrient
concentrations and are effected by physical forces.
However, the magnitude of the
effects are apparently not sufficient to be statistically significant.
Scatter diagrams of all parameter pairs for which any set of data
showed statistically significant relationships are shown in Appendix D.
DISCUSSION
General Chemistry
The results of chemical analyses on samples collected from Lake Okeechobee
during the initial 18 month period of this study indicate only minor changes in
water quality parameters from previous studies.
Table 17 summarizes the yearly
mean values of selected parameters from the previous USGS study (Joyner, 1972)
and this study for the year 1973.
The USGS yearly means are based on data
generated by much less frequent sampling (2 to 4 times each year), at different
sites, and analyzed using different techniques than those represented in the
FCD study.
Despite this nonconformity in the data, the table does show only
minor variations in nutrient concentrations for the five years.
There does not
appear to be any trend toward increased ambient nutrient concentrations.
The
apparent decreases in average concentrations for the dissolved nutrients (nitrate
and ortho-phosphate) for 1973 are probably due to the fact that the USGS analyses
for these parameters were performed on unfiltered samples.
As mentioned earlier, there is very little Lake Okeechobee data previous
to the 1969-1972 USGS study.
Odum (1954) reported 3 total phosphate values
for the periphery of Lake Okeechobee in 1952.
These values were 0.003 mg/l P
near Belle Glade, 0.007 mg/l P at Clewiston and 0.030 mg/l P near the mouth of
Taylor Creek.
Although these values are lower than the values in Table 17, the
scarcity of the data prohibits any significant conclusions.
In 1940 the USGS
sampled Lake Okeechobee and reported nitrate values ranging from 0.04 mg/l N
tp 0.23 mg/l N (Parker, et al_., 1955).
with Table 17.
These results are in very good agreement
Again, however, it would be misleading to place any significance
on comparisons of these limited data.
TABLE 17
A V E R A G E W A T E R Q U A L I T Y PARAMETERS
LAKE OKEE C H O B E E
1969 to 1973
Parameter
Lake stage m.s.l.
1969 U J
1970 U J
14.91
14.55
Year
1971 U J
12.40
1972 (i)
1973 (2)
13.32
13.34
Ortho-phosphate mg/l P
0.016
0.054
0. 036
0.029
0.005
Total p h o s p h a t e mg/l P
0.024
0.070
0.051
0.038
0.071
Nitrate mg/l N
0.164
0.170
0.181
0.124
0 .067
Total N i t r o g e n mg/l N
1.38
1.48
1.64
2.21
1.48 ;
Amm onia mg/l N
0.040
0. 039
0.081
0.040
0.026
S o d i u m mg/l
41.7
31. 3
40.0
50.9
55.7
Chloride mg/l
62.9
47. 7
60.8
74,3
86.6
C a l c i u m mg/l
44.3
41.1
49.1
55.2
48.0
(1)
U.S.G.S. Data (Joyner, 1973)
(2)
F.C.D. Data
The record of major ions in the Lake for the five year period as shown
in Table 17 may indicate an increase in sodium and chloride levels, but calcium
concentrations seem to be fairly stable.
Sodium and chloride results from the
1940 USGS sampling in Lake Okeechobee were in the range of less than 20 mg/l
for sodium and 30 to 40 mg/l chloride.
However, calcium concentrations measured
in that study were 35 mg/l to 40 mg/l.
Changes in major ion concentrations may
be due to increases in the sodium and chloride content of inflowing water or due
to the fact that calcium is saturated with respect to carbonates in the Lake.
Most previous studies have questioned the relatively high and apparently
increasing total dissolved solids (TDS) in Lake Okeechobee.
Since the con­
centrations of major ions in the inflows do not account for the ambient Lake con­
centrations* several hypotheses for the high concentrations have been advanced.
These include dissolution of the bottom (Parker,et al_,, 1955), dissolution and
groundwater inputs (Joyner, 1972} and concentration due to evaporation and
groundwater inputs (Brooks> 1974).
The study reported here attempted to approach
the TDS problem on the basis of individual ions rather than estimates based on
specific conductance.
It was hoped that the calculation of individual major ion
budgets would identify the reasons and sources for high TDS in the Lake.
Un­
fortunately the poor results of the budgets prevent further analysis of the data.
The magnitude of excess major ions as calculated from the budget is virtually
impossible to explain.
The apparent increases in sodium and chloride but not calcium over the last
30 years indicate that groundwater seepage or concentration due to evaporation
would be the most reasonable causes for high TDS in the Lake.
Dissolution of
bottom sediments would most likely cause increases in calcium rather than sodium
and chloride .
Concentration effects from evaporation would tend to increase all
77
ions equally unless there were precipitation effects concurrent with the
evaporation.
The high pH alkalinity in Lake Okeechobee may cause calcium
to precipitate as calcium carbonate although there is no direct evidence
for precipitation.
The results of monthly sampling at eight locations within Lake Okeechobee
indicated significant seasonal and areal variations in water chemistry.
The
major ions generally reflected the effects of inputs of low TDS by major inflows.
However, linear regression of Lake stage and rainfall with major ion concentration
did not indicate a statistically significant relationship.
The possible inputs
of highly mineralized groundwater may have had significant effects on major ion
concentrations.
Nutrient parameters showed much greater variation, both seasonally and areally,
than did major ions.
can be involved.
The variations are somewhat more complex since many factors
Although the yearly means of nutrient parameters at each sample
station showed that stations near major inflows were apparently affected by high
discharges of nutrients, the monthly and seasonal means of these parameters in­
dicated that several months lapsed between the time of peak discharge and the
time when elevated nutrient concentrations were measured in the Lake.
It is
possible that the station locations were too far from points of inflow to show
the nutrient input effects before biological uptake or other mechanisms reduced
the effects.
Both nutrient levels and biological activity as measured by primary
productivity and phytoplankton density, appeared to show the same seasonal
patterns of spring and fall maximums, and summer minimums, but statistical
analyses did not indicate,any significant relationships between them.
Loadings and Budgets
The loadings of nitrogen and phosphorus material to Lake Okeechobee during
the year May 1973 to May 1974 were less than those reported by Joyner (1972)
for the year 1969-70.
The USGS study showed 2,000 more tons of nitrogen and
200 more tons of phosphorus entering the Lake.
However, the volume of water
entering the Lake during 1969-70 (6,361,000 AF) was far greater than during
1973-74 (3,008,000 AF), which accounts for the higher loadings.
The majority
of the discharge loading increases were due to the Kissimmee River while the
remaining inflows showed comparable values for both discharge and loadings
during both studies.
Comparison of discharge water quality (Table 11) and land use indicates
two basic relationships.
Water quality in the agricultural canals which drain
crop lands is characterized by high nitrate values.
In contrast, the runoff
water from areas devoted primarily to pasture has high phosphorus concentrations.
Since little nitrogen fertilizer is used in the Miami, Hillsboro and North New
River Canal basins the high nitrate values in these canals are probably due to
leaching of nitrate from the organic soils.
Neller (1944) reported rapid
nitrification in Everglades peat and suspected that these nitrates would be
leached out of the soil by rainfall.
The high phosphate in Nubbin Slough,
Harney Pond Canal and Indian River Canal may be due to animal waste, which
would be particularly concentrated in the Nubbin Slough basin due to heavy
dairy activity.
The second possible source of the phosphorus is the natural
phosphate deposits in these basins.
Odum (1955) shows some natural phosphate
79
deposits in the Nubbin Slough drainage basin
and indicated that elevated
phosphate levels in natural waters may be due to leaching of such deposits.
The imbalance of the water budget used in this study limits the sign­
ificance of the materials budgets.
The high loss rate of nutrients is, however,
in agreement with evidence for biological response to the fjiigh nutrient loadings.
Also, the elemental ratio of nitrogen to phosphorus lost to other sinks was 20:1,
which compares favorably to the average elemental ratio of 16:1 (nitrogen:
phosphorus) in cellular material.
Thus, although the absolute amount of nutrients
retained by the Lake according to the budgets may be in error, the relative
amounts lost to other simks sutjtjest that they were fixed into cellular material.
Regression Analysis
The classical patterns of decreasing inorganic nutrients with increasing
phytoplankton densities, productivity, or total nutrients were not evident from
the chemistry data.
Occasional instances of inverse relationships between in­
organic nutrients and biological parameters were indicated by the regression
analyses data, but no consistent pattern developed.
Linear regression did suggest that nutrient parameters were dependent upon
Secchi disc readings which were in turn dependent upon wind stress as measured
by EDI.
The relationships showed that as wind stress increased Secchi disc
readings decreased and nutrient parameters increased.
These relationships may
mean that wind stress was creating enough wave action to suspend sediment
material and subsequently release previously bound inorganic nutrients.
The
resuspension of bottom material would in itself tend to increase the total
nutrient levels.
The budget calculations of both this study and the previous
USGS study (Joyner, 1972)indicated that considerable amounts of nitrogen and
phosphorus may be retained in the Lake as sediment material.
The results of
Ekman sampling indicate that unconsolidated sediments (primarily a fine black
mud) are found generally in the central and northeastern portions of the Lake,
Linear regression analyses of nutrient parameters at mud bottom stations with
Secchi disc readings and EDI indicated a strong dependency of nutrients on the
wind stress.
Joyner (1972) estimated that the average wind speed on Lake Okeechobee
was 9 mph and that this wind speed would effectively mix the water column to
a depth of 8.4 feet (2.6 m).
The EDI for a 9 mph wind blowing constantly for
5 days would be 0.35 g/cm/sec^.
Measured EDI1s for this study were never
above 0.35 g/cm/sec^ but mean surface and bottom chemistry values indicated
that the Lake was well-mixed.
The large fetch and shallow depth of Lake
Okeechobee apparently produced effective mixing and possible resuspension of
bottom sediments with even relatively minor wind stresses.
Although there are
only limited data on both the physical and chemical characteristics of sedi­
ments in Lake Okeechobee, the results of this study indicate that physical
forces acting on the sediments may be instrumental in determining the areal
and seasonal distribution of major nutrients within the Lake and ultimately
the biota of the Lake.
Primary Productivity
Based on data collected for other Florida lakes by Brezonik, et a/L (1969),
Lake Okeechobee primary productivity values were high, 1864 mg C/m^/day or
161 mg C/nr/hour.
A listing of the gross primary productivities for Lake
Okeechobee and various Florida lakes is presented in Appendix E.
Factors which affect primary productivity include physical parameters
such as temperature, light intensity, water transparency, and turbulence,
and chemical parameters such as major and minor nutrients, pH, and alkalinity.
81
These factors undoubtedly help to determine the composition and condition of
the lacustrine biota.
Although consistent relationships among primary productivity, nutrient,
and physical parameters were not observed (Table 16), certain trends were
indicated.
Aside from biological considerations, physical-water clarity
(Secchi disc readings) and EDI (wind stress)— rather than nutrients--total
phosphate, ortho-phosphate, total Kjeldahl nitrogen and nitrate— parameters
were more often related to primary productivity.
Green algae, especially the small, flagellated, unicellular types,
appeared to be responsible for much of the primary productivity in Lake
Okeechobee.
Primary productivity at Station 4 in the spring (Figure 10)
was higher when the phytoplankton population was dominated by these green algae
(Figure 13) than when it was dominated by blue-green algae.
This trend was
observed at other productivity stations but was much less conspicuous.
Phytoplankton Populations
Information on the phytoplankton of Lake Okeechobee, and subtropical lakes
in general, is very limited.
The USGS report by Joyner (1972) is the only
known source of information on Lake Okeechobee phytoplankton.
The phyto­
plankton observed in this study differ significantly from those reported by
the USGS.
None of the dominant phytoplankton observed by the USGS were
dominant during the FCD study.
The USGS report listed 24 species of phyto­
plankton common to Lake Okeechobee.
species.
To date, the FCD study has revealed 83
The USGS did not report the presence of any euglenoids or small
green flagellates.
The FCD study indicated that the small green flagellates
dominated the green algae.
Although a time lag exists between USGS data
and the data from this study, a drastic change in phytoplankton probably did
not occur.
Differences in sampling technique, sampling frequency, counting
procedures, and taxonomic references may account for the differences.
The algal populations of several other Florida lakes have recently
been studied.
Lake Tohopekaliga was studied from June 1970 to January 1972
(Holcomb and Wegener, 1972).
The species list for this lake was quite
similar to the list compiled by the FCD for Lake Okeechobee.
However,
the dense blooms of Aphanizomenon and Anabaena characteristic of Lake Toho­
pekaliga were not found in Lake Okeechobee.
In 1966 and 1967, Lackey (1967) found that Lakes Apopka, Dora, Carlton,
Beauclaire, and Griffin were dominated by blue-greens.
the same algae which were present in Lake Okeechobee.
These lakes contained
Persistent blue-green
blooms were observed in Lakes Apopka and Dora throughout the year.
Although
blue-green algae dominated the phytoplankton of Lake Okeechobee, the blooms
did not persist and blue-green algae did not dominate to the exclusion of
all other algae.
The dominance of a lake by blue-green algae may be closely related to
water chemistry.
Several authors have observed the dominance of blue-green
algae in alkaline conditions and their relative absence in acid conditions
(King, 1970; Shapiro, 1973; Fogg, 1956; Prescott, 1970; Brock, 1973; Brezonik,
83
The relationship between pH and algal population was observed in several
other Florida lakes (Marshall, 1974, unpublished data).
Lakes Tohopekaliga
and Kissimmee with a pH range of 8.1 - 8.8 were dominated by blue-green algae.
Lakes Cypress and Hatchineha with pH values ranging from 6.2 - 7.2 were
dominated by green algae and diatoms, respectively.
East Lake Tohopekaliga
had a pH range of 6.7 - 7.1 and was dominated by diatoms and dinoflagellates.
Alkaline pH in Lake Okeechobee, 8.2 to 8.4, may be a contributing factor
to the dominance by blue-green algae.
Blue-green algae often give the impression of being favored by warm and
nutrient-rich conditions (Fogg, et^ al_., 1973).
However, Pearsall (1932) and
Hutchinson (1967) observed that blue-green algae tended to grow most rapidly
when concentrations of inorganic nutrients such as nitrate and phosphate were
lowest.
The abundance of blue-green algae during periods when nutrients are
reduced may be explained by the adaptive physiology of these organisms.
Blue-
green algae are able to store large quantities of nitrogen (Stewart, 1972)
and phosphorus (Stewart and Alexander, 1971) and utilize them during periods
of nutrient deprivation.
It is paradoxical that although they tend to develop
at times of nutrient deficiency, planktonic blue-green algae are nevertheless
characteristic of waters receiving high nutrient inputs (Fogg, <^t a K , 1973).
Vollenweider (1968) from surveying the available literature, concluded that
massive growth of blue-green algae is likely if nutrient concentrations exceed
0.01 mg/l P and 0.2 - 0.3 mg/l N in the spring and/or if the loading per unit
area per year of the lake reaches 0.2 - 0.5 mg/l P and 5 - 10 mg/l N.
The
average nutrient concentration and loading rates of phosphorus for Lake Okeechobee
found in this study are within the above ranges quoted by Vollenweider.
Blue-green algae blooms have been shown to be triggered by phosphate
(Schindler, 1974).
Examination of phytoplankton and loading data for Lake
Okeechobee tends to support this observation.
The large influx of ortho­
phosphate in July, particularly from Nubbin Slough (Figure 15), may have triggered
the pulse of blue-green algae observed during that month at Station 1 (Figure 13).
Similarly, at Station 5 loadings of ortho-phosphate from Fisheating Creek reached
a maximum sometime between the middle of August and middle of October, as did
peaks in blue-green algae populations (Figure 13).
Fall increases in blue-green algae concentrations were not as great as
Stations 4 and 6 , as they were at Stations 1 and 5 (Figure 13).
This may indicate
that most of the fall ortho-phosphate loading was removed at the peripheral
stations (1 and 5) and did not reach the more distant stations (4 and 6 ).
The increase in blue-green algae concentrations during the spring pulse
was greater at the centrally located stations (4 and 6 ) than at the peripheral
stations (1 and 5).
had sand bottoms.
Stations 4 and 6 had mud bottoms whereas Stations 1 and 5
The greater response of blue-green algae (increases in densitie
at Stations 4 and 6 may be explained by a release of ortho-phosphate from the
mud bottoms.
The abundance of green algae in Lake Okeechobee, especially the small, flagel
lated, unicellular types appear to be related to nitrate loadings.
Large amounts
of nitrate were pumped into the Lake by S-2 and S-3 during July (Figure 16).
The
high loading of nitrates and relatively low loading of ortho-phosphate may
account for the comparatively high percentages of green algae and low percentages
of blue-green algae at Stations 6 and 7 (Figure 11).
In contrast, the low ambient
nitrate concentrations may account for the low percentages of green algae at
Stations 1 and 5.
85
Trophic State
There are many methods of estimating the trophic level of lakes and
several systems of classifying such levels.
The chemical and biological data
collected during the initial 18 months of this study are adaptable to several of
these methods.
It should be noted that Lake Okeechobee lies within the semi-
tropical climatic zone and that many of the principles defining trophic state
classification were developed from data collected on temperate zone lakes.
A
summary of several trophic state classification systems and Lake Okeechobee
trophic level according to each system is presented below:
Reference
Classification Base
Lake Okeechobee Trophic Level
Brezonik, et al_. (1969)
Primary Productivity
Eutrophic
Sakamota (1966) and
Vollenwieder (1968)
Total Phosphate/
Nitrate Nitrogen
Eutrophic/Oligotrophic
Vollenwieder (1968) and
Shannon & Brezonik (1972)
Loading rates depth relationship
Mesotrophic
Primary productivity is probably the best trophic state indicator since it
is a result of the many factors effecting the rate and level of eutrophication.
Comparison of the primary productivity of Lake Okeechobee (161 mg C/m 3 /hr)
to those of other Florida lakes studied by Brezonik, et a l . (1969) indicates that
Lake Okeechobee would be classified as eutrophic.
One of the simplest methods of determining a lake's trophic level is
based on ambient nutrient concentrations within the lake at the winter over­
turn.
Ranges of total phosphate and inorganic nitrogen for the classical trophic
types have been compiled by Sakamota (1966) and Vollenweider (1968).
Since
Lake Okeechobee has no winter overturn, the yearly average total phosphate,
0.071 mg/l P, and nitrate nitrogen, 0.067 mg/l N, for the Lake were compared to
the trophic level ranges of these parameters.
The total average phosphate for
the Lake falls into the range category of eutrophic lakes (0.30-0.10 mg/l P)
according to both systems referenced above.
For inorganic nitrogens of less
than 0.1 mg/l N both classification systems would consider Lake Okeechobee as
oligotrophic.
If the maximum monthly means of each parameter are compared to
the ranges for each trophic state, there would be no change in the Lake's classi­
fication according to these systems.
A second classification system suggested by Vollenweider (1968) is
based on the relationship between nitrogen and phosphorus loading rates and mean
depths.
Shannon and Brezonik (1972) have adjusted these loading rate/lake depth
relationships for semi tropical lakes based on their analysis of 55 northern
Florida lakes.
The loading rates of nitrogen and phosphorus to Lake Okeechobee
2
2
as calculated from the 1973-1974 data were 3.4 g/m /yr and 0.33 g/m /yr, re­
spectively.
These rates applied to a lake with a mean depth of 3 meters place
Lake Okeechobee within the mesotrophic level according to Shannon and Brezonik's
adjusted relationships and in the eutrophic level according to Vollenweider's
relationships.
87
CONCLUSIONS
The conclusions concerning the chemical and biological characteristics of
Lake Okeechobee are sunmarized below.
The conclusions are based on the initial
18 months of an on-going study and may be subject to revision based on additional
data.
1.
Yearly averages of major nutrients for the period 1969 to 1973 show
no significant change.
2.
Nutrient parameters (nitrogen and phosphorus) showed seasonal variation
with maximum concentrations during the spring and fall and minimum
v
concentrations during the summer.
3.
Morphological characteristics of Lake Okeechobee (large surface area
and shallow depth),combined with sediment characteristics were critical
to the levels and distribution of major nutrients within the Lake.
4.
The high nutrient loadings to Lake Okeechobee by major inflows had
little direct effect on the ambient water chemistry but may have
stimulated biological activity causing rapid uptake of these nutrients.
5.
Phytoplankton and primary productivity showed seasonal variations with
similar patterns to nutrients i.e. maximum spring and fall values and
minimum summer values.
6.
Areal variation in primary productivity and phytoplankton populations
was probably related to nutrient leadings.
7.
Blue-green algae (Cyanophyta) dominated the phytoplankton and appeared
to be related to ortho-phosphate.
Green algae (Chlorophyta) were less
abundant than blue-green algae and appeared to be related to nitrate
nitrogen.
Green algae also appeared to be responsible for much of the
primary productivity M
the Lake.
Chemical and biological characteristics of Lake Okeechobee indicate
that it is in the early eutrophic state but the rate of eutrophication is unknown.
89
REFERENCES
American Public Health Association. 1971. Standard Methods for the
Examination of Water and Waste Water, 13th Ed., Washington, D. C.
Ayers, J. C., Chandler, D. C . , Lauff, G. H., Powers, C. F . , and Henson,
E. B. 1958. Currents and water movements of Lake Michigan. Great
Lakes Res. Inst. Pub. 3:161.
Brezonik, P. L . , Morgan, W. H., Shannon, E. E. and Putnam, H. D. 1969.
Eutrophication factors in north central Florida lakes. Engineering
Progress at the University of Florida. Bull. Series #134, Water
Resources Research Center Publication #5, 101 pp.
Brock, T. D. 1973. Lower pH limit for the existence of blue-green algae:
evolutionary and ecological implications. Science 179:480-483.
Brooks, H. K. 1974. "Lake Okeechobee" in Environments of South Florida:
Past and Present, Memoir 2, Miami Geological Society, Patrick J.
Gleason, Editor, p. 256-286.
Fogg, G. E. 1956. The comparative physiology and biochemistry of the
blue-green algae. Bact. Rev. 20:148-165.
Fogg, G. E., Stewart, W. D. P., Fay, P. and Walsby, A. E.
Blue-green Algae. Academic Press, New York.
Holcomb, D. E., Wegener, W. 1972. Lake Tohopekaliga
Game and Fresh Water Fish Comm. Progress Report
No. F-29-1.
1973.
The
drawdown. Fla.
Job No. 5, Project
Hutchinson, G. E. 1967. A Treatise on Limnology. Vol. 2. Introduction to
lake biology and the 1 imnoplankton. John Wiley & Sons, New York.
Joyner, B. F. 1972. Appraisal of chemical and biological conditions of
Lake Okeechobee, Florida 1969-1970, Open File Report 71006. United
States Geological Survey.
King, D. L. 1970. The role of carbon in eutrophication.
Control Fed. 42:2035.
Lackey, J. B.
1967.
J. Water Pollut.
Written communication.
Neller, J. N. 1944. Influence of cropping, rainfall and water table on
nitrates in Everglades peat. Soil Science, 57 (4): 275.
Odum, H. T. 1953. Dissolved phosphorus in Florida waters.
Survey, Rept. Inv. 9.
Florida Geo.
Parker, G. G . , Ferguson, G. E., and Love, S. K. 1955. Water resources of
southeastern Florida, with special reference to the geology and ground­
water of the Miami area, U. S. Geologicdl Survey Water-Supply Paper 1255.
Pearsall, W. H. 1932. Phytoplankton in the English lakes. II. The
composition of the phytoplankton in relation to dissolved substances.
J. Ecol. 20: 241-262.
Pennak, R. W. 1953. Fresh-water Invertebrates of the United States.
Ronald Press Company, New York.
Prescott, G. W. 1970 Algae of the Western Great Lakes. Wm. C. Brown
Company, Publishers. DuBuque, Iowa.
Riebsame, W. E , , Woodley, W. L. and Davis, F. E. 1974. Radar inference
of Lake Okeechobee rainfall for use in environmental studies, Weatherwise
27 (5):pp 206-211.
Sakamoto, M. 1969. Primary production by phytoplankton comrtunity in
some Japanese lakes and its dependence on lake depth, Arch. Hydrobiol.
62(1 ):1
Schindler, D. W. 1974. Eutrophication and recovery in experimental lakes:
implications for lake management. Science 184:897-899.
Shannon, E. E. and Brezonik, P. L. 1972.. Limnological characteristics
of north and central Florida lakes. Limnol. and Ocean. 17(1): 97-109.
Shannon, C. E. and Weaver, W. 1963. The mathematical theory of communication
Univ. of Illinois Press, Urbana.
Shapiro, J. 1973.
179:382-384.
Blue-green algae:
Why they become dominant.
Smith, G. M. 1950. The Fresh-water Algae of the United States.
Hill Book Company, New York.
Science
Me Graw-
Stewart, W. D. P. 1972. Algal metabolism and water pollution in the
Tay Region. Proc. R. Soc. Edinb. 71:209-224.
Stewart, W. D. P. and Alexander, G. 1971. Phosphorus availability and
nitrogenase activity in aquatic blue-green algae. Freshwater Biol. 1:
389-404.
Strickland, J. D. H. and Parsons, T. R. 1968. A Practical Handbook of
Seawater Analysis, Bull. #167, Fisheries Research Board of Canada,
Ottawa, Canada, pp. 263-266.
Tiffany, L. H. and Britton, M. C. 1971.
Publishing Company, New York.
The Algae of Illinois.
Haefner
Vollenweider, R. A. 1968. Scientific fundamentals of the eutrophication
of lake and flowing waters, with particular reference to nitrogen and
phosphorus as factors in eutrophication. Tech. Report, DAS/CSI, 68.27,
OECD, Paris, France.
Whitford, L. A. and Schumacher, 6 . J. 1969. A Manual of the Fresh-water
Algae in North Carolina. Tech. Bull. No. 188. The North Carolina
Agricultural Experiment Station, Raleigh, N. C.
APPENDIX A
LAKE OKEECHOBEE WATER CHEMISTRY DATA
LAKE STATIONS 1 - 8 AND 10 - 16
All results in mg/1 except when noted and specific
conductivity (Cond Field) which is pmhos/cm
0
indicates data missing
indicates results less than
quoted limit of sensitivity
*
LH.KE
Ok-EECHOBFE
— 0 11
*
**#*«#**#*##*#*#*#**#*###**•«***
I„AkF
5 T A T I ON
O ftTr
?/
V
NC^-M
MQ->-N
NR/L
M fi/L
*««**###
«4«»4#««
n
. nr)7
- o . no4
5/71
5/71
nn 4
. fin7
4/10/71
e,/ R / 7 1
A/ 4 / 7 7
7/
S I 10F ACFT
1
9/73
P/ 9 / 7 1
9/11/71
10/10/71
11/15/71
l?/?0/71
1 /I f t / 7 4
? / ft/74.
? / ? 1 /7(i
1/■6/74
T/?n/74
4/ 3/74
A/1 9 / 7 4
5/ 8/74
ft/ 4 / 7 4
f t /1 8 / 7 4
.
n , OftR
- n. O ^ P
-
. nl6
.045
—0 . 0 ^ 4
-0 . { i n 4
- o . nn4
.054
-n . r «4
, 04ft
.ni q
. fi7 a
. oi 5
- n . nn4
-n . 004
-0.0^4
-n . o n 4
-n,no?
-n.on?
- n .004
- 0 . OOP
- 0 . OOP
.no*
-0.004
-n.oo4
-0.004
-0.004
- 0 . 0ri4
-n . o o 4
-n.004
- 0 * fl04
• 00 A
- n .n n4
-0.004
.004
- 0 . 0 04
NH3-N
MG/l.
Tkn
MG/L
nR-P
Mr} /L
T -P
MG/L
SIO^
Mfi/L
»«»#««««
.0 30
.016
. 050
. nftO
.03!1
0
-o. cio
.050
-0*010
-o. oio
-0, 010
-o. oio
. n?n
-0.01 o
-0 . n i 0
. 11 0
. 03 0
.. 050
1 .430
1.380
1. 7H0
2.100
1 . 690
1 . 460
1.400
1 . 5P0
1 .?oo
1 ,?O0
- o • oin
- 0.010
- o . n io
1 .350
1.460
1 . 9 1 ft
1.640
2.510
1 . 77 0
1 . R10
1.«30
?_
.480
2.130
P . 020
, nl 9
.002
.003
-o.no?
.004
-n.no2
.017
. n 16
-0 . 00 2
.007
.002
.003
-0 . 0 0 2
-n.no?
-n.nn2
-n.no2
. no3
. 078
.045
.042
.125
. 14 0
.O^O
.0P1
,079
.054
.045
.046
. 03 6
.050
.0?4
.073
.OftO
n
6.300
3. *+00
7.500
4.700
3.500
5.730
2.910
1 . 66 0
1.340
1. 9Q0
4.700
4 . POO
5 . ?50
5 . n?n
.047
5.590
- 0.002
.00?
- 0.002
-n.no?
. nfto
.031
4*090
. 049
. 0 41
4*890
5. 1^0
4.120
4.280
*
«■
f_Ak F
D
a
T
STATTCN
f
)
3/?0/74
4 / 3/74
4 / 1 9 / 74
5 / H/7A
6/ 4/74
* / 1 8/74
T F M P
n . o .
n « - r
wr; / L
OJ
<
\9.7nn
2^.700
?o .p o q
24 . POO
29.000
20,7^0
2 9 .300
2 P.SOO
2 ft.^nn
21.500
15.50(1
21.300
1 =». «5 n
l^.ioo
2 0 .0 0 ",
11 . 0 0 0
n . ooo
7.^00
7.400
6.700
6.700
ft
7.300
8.300
Q . 4 nn
9 . 7no
9.ono
f*. 2 0 0
7. OOO
9 .700
2 o .70 n
P .400
2 5 .noo
27.400
2 7 .7 r, o
Q.ono
<5 . 0 0 0
7. 500
s .200
25.700
2 3 . ^oo
nKFEcHowrr * p d
<*
S' lpFurE
»*■»*»#**
?/ 5/77
3/ 5/77
4/10/77
5/ P/77
6 / 4/7**
7/ 9/7?
A/ 9/7-*
Q /,1 1 /77
10/10/73
1.1/15/77
12/20/73
1 /I 6/74
?/ ft/74
2 / 2 1 /74
3/ 6/74
lakf
7.200
n.o.
^ sa T
*««»««»«
1l9,e*5
130*952
S7.77B
P8 . 095
A5.PQ7
8 5 * P 97
0
<93.^0
101 . ? 2 0
1 Oft. P 1 B
97.9R0
100*000
8 9 . 1 30
03.071
105.415
93.7^3
R 7 . 0 05
Q4 .1 1«
1 0 7 .1 'i 7
92.C93
1 0 1 .?35
PH
FIFLO
P .600
8.700
«* 750
a . 350
a. 300
B * 750
P . 090
7. poo
P . 300
p.son
P . 500
P . 500
P . pn o
P . 500
P . 700
P.500
P . *00
P . *00
P ,500
P . 600
P .300
ALK
M^Q/L
2 . H 00
2.700
1 « 700
3*28 0
2 . «00
2.820
1,^00
1 .400
2 . 160
2 * 1^0
2.500
2.^30
2.570
P . 600
P.720
7.67 0
3.410
2.690
? . 790
3.360
7.230
ccwn
FIELD
»•»*#**»#
SECCHI
CM
«««««««*
670.000
33.000
670 .0 0 0
0
0
620.000
6fi9.000
460.000
310.000
5 3 0 . 0O0
5 « 5 • OOO
5 6 0 . 0O0
43.000
29*000
20.000
29.000
65e . 000
450.000
655.000
330.000
663.000
680.000
6P0 *00 0
7 15 . 0 0 a
75^.000
7 4 c .000
67*000
109.000
91 . 0 0 0
75.000
97.000
0
82*000
38.000
ft
4 P . 000
35*000
2 6 * 0 00
43.500
4 0 . i.i0 0
0
0
*
LAKE
OKFFCHORFF
-
Pit
<1
»###*■ »**»##»#»*■ »*##»**#**##****»
Lflk-F S T A T I O N
d
*tf
-tnnm.**#*
1
MA
a .a ,
« « « »4>#« #
SHOFAfF
K
CA
M P/ I .
#«««««»»
A .A *
«#«»#«#«
? / 5/7T
?/ 5/7?
4/io/7?
R/ H/7?
A/ 4/7?
7/ 9 / 7 ^
R/ 9 / 7 T
0 / 1 1 /?■*
lo/io/7?
11/15/7?
1 p>/?n/7?
1/I6/^A
? / 6/74
?/ ?1J"74
?/ 6/74
55.200
4.000
5 8 . o0 n
^1.0^0
2<5 . 1 n n
. Mt . f i r n
5 3. s no
= 9 . ooo
4 6 . on n
3 'i, r p n
47.00 0
4 9 . Q0 0
51 . ' i nn
5 6 . i <1o
5 5 . non
5 4 . n0 0
5 4 . nor,
6 . o oo
2.420
6 . \ 90
4.*20
4.470
3.140
? ,?nn
3.400
?.75n
4.000
4.500
4 , 1(10
?/ 7 0/ 7 4
4/ 3/^4
5 4 , nr o
si . fi f i n
4.100
4.400
?»R00
? . H00
50.0^0
2 7 . POO
« 6 • 0 o0
4 5 . 9 TO
51.000
32.400
21.100
38 . o n o
3 6 . c oo
47,000
49 . 4 00
31.000
?9 * 0 n 0
44 . 6 0 0
4/19/7 4
<;/ R / 7 4
•57.000
6 n . no n
4 .2(10
4 . P00
* / 4/74
6 / 1 M/74
66.000
5 8 . no o
5 .200
4.400
*58 . 0 0 0
44.000
47.400
S6 . 6 00
53 . * o0
45.P0C
WR
i .A
.
17.000
17.000
1o.?oo
i n . 700
16.700
lfl.qoo
12.400
19.000
14.000
11 . ROO
1 * . o 00
17.100
10.400
IS . s n o
17.600
1* . 0 0 0
15.R00
IP . 4 0 0
? ! > , 00*1
10.400
15.«00
CL
MO/I.
««««#»*«
SCA
t
MG/L
**#«##«*
« i . ooo
0
R3.O0 0
4H . no 0
1 n o . non
RP . OOO
9S.6Q0
0
0
6 9 « R 3 'I
44.P00
66.100
68.900
79.000
R9.7 0 0
R3 . 3 0 0
R7 . 8 0 0
RS . 2 0 0
R4 . 4 0 0
P9 . 6 0 0
9 7.700
9?.?0o
1 ri 1 . ^ 0 0
99.600
0
0
0
0
0
0
0
n
4i,P«0
4P.OP0
5-». 7P0
52.800
3P . 3 0 0
57,100
54.000
59.300
6P , 6 o o
0
m g
-
ff
/L
0
0
0
0
0
0
0
.420
.140
. 132
0
0
0
0
0
0
0
0
240
• 3 20
-0.020
.
w
I.AkF ST/'TTON
1
C fi-r
##****#«>
n.^.
P . O .
tr,/L
o. s a t
«#«#4444
2 /
5 / 7 i
1 5 . s ^
1/
4/1
S/
* /
7/
r/7’
«/71
4/7?
9/7i
]o.Qm
Pn.HOi'
? 4 . r^ n
P^.nin
2fl,(i(iri
0/
9/71
? 9 , 1 O'i
n
9 / 1 1 / 7 1
?R.nr>o
7 , ? n n
9 . 7 o o
P . 900
7.«0O
7 . son
> . 7 oo
a . non
1 0 / 1 0 / 7 1
2 * . IP O
7 . 4 0 0
1 1 / 1 5 / 7 1
2
1 . 0*0
9 . l n o
1 1 / 1 5 / 7 1
2 1 . 1 0 0
1 1/1 S / 7 1
l ? / ? o / 7 l
2 1 . 2 ^ 0
15
n . ? o n
a . 300
. o o o
H.Rfin
V/i 6 / 7 4
3/ 6 / 7 4
2 ] .400
n. BfiO
2 0 . 0 0 0
P . 200
3 / 3 1 / 7 4
1 ^ , 1 ^
£ . 7 0 n
1 /
6 / 7 4
7/70/74
4/ 1/74
4 / i tJ / 7 4
e; / ' H / 7 4
(£,/ 4 / 7 4
f / 1 H/7^
20.00(1
a . 600
B . S n n
24.40/1
?3,<;nn
'24.300
27 . 4 0 0
.jA.Ono
O K E E O O ^ F F
-
Pll
*
PHTTO
n.->Tr
####«#*#
LAKF
7.100
p . ooo
7.200
6.^00
7.100
M K
Pw
f t f
.l d
*««■*«*■(!■*
m f o
CCM[1
/ l
f
i e
l
S E C C H I
n
* <n>#««■!>«
«««««««<»
##*#«*#*
97 , e « n
p
. ^ oo
2 . H 0O
5 9 0 . non
0
96.719
M 6,*67
P. 100
p.ISO
2.700
i .*oo
1.200
2, H o
2 . P40
1.M O
1.410
2.24 0
5 9 0 .000
0
0
620.000
6 P 0 . 00 0
4 7 S . OOO
3 1 S . 0 0 (T
530.000
5fis.non
5fls,ooo
0
0
0
0
0
0
0
0
0
0
p.son
P. S 00
0
2.500
P. 400
P. 20 0
P . 450
P. 4?ri
2.73f)
2.590
2*^20
2-720
5 n s .000
5 7 c . 000
6 5 * . OOO
54 K . 0 0 0
6 5 * • 00 0
3 7 0 .000
6 7 ? . Ooo
6 P0 . 00 0
0
0
0
0
0
0
0
0
0
0
0
0
P 9 . ? P6
H!5. 0 0 7
7 5 . 9'.9
U
9 1 .H 9
90 , 2 4 4
101 . 1 U
102. 22?
| 03.113
P6.275
97.77B
« 9 , 110
7 2 . 0 43
104*148
94 . 4 44
M3. = 29
q 4 • 1 1B
P4.7nfe
P 3 . 9 1; 1
o o . \ 21
P . 4 00
s . soil
n. « 00
P. 1 in
R. 00 0
p . i nn
P . 4*50
p. 45 0
3.160
n
3,690
1.440
P. 5 0 0
P.AOO
P. 60o
P . 7 oo
p. 700
fl . 1 0 0
-
2.530
2 . fl 4 o
1.280
1.260
6 8 0 . 000
721.000
7SC.OOO
74R ,000
i
*
( ak-f ^tfittnf\
1
n a t <-
KTI.I'.!
<h h h h h h h *
«»«««<)«#
?/ ^/77
T/
4/1
c; /
ft/
7/
5/77
IV 7^
H/ 7 7
4/ 7 " »
9/77
n/ 9 / 7 ?
9/11/77
I n/ 1 n / 7 7
1. 1 / 1 5 / 7 7
I I /I “
i/7-l
11/15/77
3? / ? 0 / 7 7
1 / I (^/74
? / f t / 74
? / ? 1 /7 4
•>/ ft / 7 4
1 / p n / 7 /*
4/ .7/74
4/19/74
e;/ fl/ 7 4
ft/ 4 / 7 4
ft/i « /74
MO/I
.0*7
-n . o o 4
.no?
■o . o o p
■
{I. nop
o?«i
,,'in
■
o . no4
'0 . 0 04
fl
n
-n . nn4
.n4ft
■
n „n o4
. m n
.'*15
.0*7
.n 14
■A . 1104
.005
.
>o . n o 4
LA K E
O^FFCHOMF F - P i ]
#
bottom
N'C?-N
mo/L
NM3 -K
MG/I
«nnnnnnn*
.n03
- n .n n4
-n.no?
-o.oo?
—0 . 0 0 4
- o , on«
- 0 . TOP
.007
“ 0.004
-0.004
. 0 7 0
n
- o . no4
- n . no4
- 0 . 004
- 0 . 0 04
- o . no4
-0,004
-0.004
-0.004
-0.004
«##'»««««
1 . 4 5 0
OP-H
MO/L
T-P
MG/L
SIG?
MG/L
»«■**«#*»
#»#»#*##
*<nnnnn»*
. 0 0 4
.OPO
0
. n ? 6
1 . 1 7 0
- o . n o ?
.07ft
ft • 4 0 0
.07fJ
1.73'!
. 0 0 4
. 059
3 . 7 0 0
• 07(J
? .
4nn
. 0 0 ?
. 0 7 5
7 . 7 o o
. 0 ? 0
? . OPO
. 0 0 4
. 1 1 0
4 • ft 0 0
.770
-0 . n o ?
. 047
3*500
1 . ? « 0
. 0 1 4
. 0«5
5 - 7 7 0
1 . 7 4 0
. 0 1 4
0 . 0 1 0
0.010
•Oftn
C . o i
n
0 . 0 1 0
0
-0.004
-0.004
Tk.n
M<J /L
1
1 .7 7
0
1 .7 R 0
• 0^2
3.1 ?n
-o.no?
. no«
* 0c 7
2 * 1 4 0
* 046
1 . 3 0 0
0
0
0
0
0
0
.oi n
0
0
n
n
?.7ft0
- 0 . 002
.032
1.900
O.f’l o
1 . 740
- n . n o ?
.0 ? 7
4 . ft ft0
? . ? 7 0
. 0 7 4
4.?2n
o
1
.oBO
.OAO
0. m o
?
.900
-o. o n ?
-o. o n ?
- n . o o?
.002
.002
.0 03
1 . 1 4 0
- n . o n ?
.0?7
0. 0l0
0.010
1 .
- 0 . 0 0 2
. 0 *P
-0 . 0 0 2
.070 .
0.01 0
0 . 0 1 0
?.*7Cj
o . m
n
?.
.14 0
?7u
1.
^ o
o . m
1 .
77 0
«5>~
*075
.07P
5 . 3 9 0
. 0 * 3
4.H20
5.150
.045
5.R50
. 0 ^ 7
4 . 0 6 0
5.750
4. lflO
6 • 2 R0
3=>
tn
L ake
o K F F r h n M F F - Pii
*
#*»**«*#«**#«*##*##*#**#********
I
| IKf
STATION
n/iTf
1
P 0 T TC >■
'
r.‘ a
A. A,
k
Wf=/L
Ca
MR
rL
A.a.
a
.A,
A^.Hno
Ki'.nnn
p 7 , n n f;
6 o . non
^4.5*o
M . Qr o
44 . non
3 1 . t n r.
47.00*
4 9 . o 0 f>
0
0
5 1.
c ft,nn|i
t|4 . onii
c^/nn
4 H. nnn
c 1, nno
5 1 • 11* <'
= j | . ft o r.
c 5 • n o i>
6 6 , non
6 s . r>* *
1. 600
5 5 . ('(•n
\9 .0 * 0
? 9 .6 r 0
5 ^ ,P o o
4 5 , Aflf
49.600
33.60 0
? 3 .ioo
”
*9 « 7 0 0
4 n . o "io
i . ° no
. ISn
4 . IS*
3.740
4.6}*
1.130
P .4^0
i , ^ on
1.710
n
n
4.000
4 . 00 0
4 . ?(10
1.900
4 . 0 f) (i
4.100
i . poo
4 .1( 10
4.500
r . 4 no
4 .con
?
0
0
0
49.0*0
49.400
45.000
3 H ,?oo
4 4 ,6 0 0
44.000
45.0*0
«;o • p o o
56.600
e,5 .4 00
* 2 .poo
T -F f
1.
MG/L
*****«##
«•««*»*««
*##*##**
16.000
17.000
l ft. mr ,
19.700
17,1*0
1 H . 400
lPsQOC
19.600
14.^00
is.i*n
7 3.000
« ? . oo 0
4^.000
1 o o , n 00
7«.ooo
9^ ^0*
7 3.700
4 P .o0 0
66.500
69 . <3 0 0
0
0
0
0
0
0
0
0
0
0
#*###»*«■
?/ 5/71
T/ 5 / 7 1
4/1 r / 7 l
^ / M/7?
6/ 4/71
7 / 'J/71
0/ 9/71
9 / 1 J / 71
1n / 10/71
11/ I S/71
11/ I S/71
U /I S/71
1? / ? o / 7 ?
1 / 16 / 7 A
?/ 6/74
?/?1/74
1 / 6/ 74
3/?o/74
4/ 3/74
4/19/74
q/ q/74
6/ 4/74
6/ l h/ 7a
S 04
^ R/ l ,
17.000
17.400
15 . & 0 0
15.400
17.600
16.000
l a . 4 r. n
in , ? * n
1 9 . #.00
2 * . poo
1^,60*
.
P3.000
S 9 . .10 0
P 3 .300
9 3 .flOO
06.200
R5, 700
Bfi , 6 0 0
10? .n 0 0
9 3,^00
1*1.300
1 o o .30 0
0
0 ■
0
0
0
0
0
0
0
0
4 C .7 0 0
46,7*0
6 3.300
20.*"0
4 5 . POO
61.*00
55.6*0
* 1.10 0
6 P .9 0 n
6 9 . ?*o
0
0
0
•5 ? 0
.090
* 1 fln
0
0
0
0
0
0
0
0
0
0
.340
.340
.4 ? 0
*
L & k F S T ftTTO\
n f.r r
?
t p:
«■«
1 /I ^ / 7 T
?/ ^ / 7 1
1 c; # p r f
3/
? 4 , n i ' r
^/77
4 / 1 1 /7?
*/
H/77
*/ 4 / 7 1
7/
^/77
P/
9/77
2 0 . H « P.
2 5 . of-!
2 « . S n o
1 1 . n n fj
0 / 1 1 /77
tO/10/73
? * . R ft(j
U
?4 . S o n
/ 15 /7-»
1? / 5 0 / 7 7
1 / 1* /74
1 5 . ft ft 0
r .r.
M ^ /L
<!<11 # (MHHt
Q . Qftd
1 0 .PflO
<5. n n a
p .?an
7.600
7 . inn
*.*00
a
p.2oo
7 . 3no
o.^on
^no
2 3 . P n ri
«.5nn
9/ fr/74
? n . 5 0 0
? /? 1/74
19. n n n
?/ 6/74
? / ?n/74
? 1 .?l':l
p.ion
7 . 6nn
«.9nn
P . 400
2 n . n n -i
7/74
25.20-1
7 ,? n n
4/19/74
2 3 . ^ 0 0
t;/
P/74
2 s . h n o
A/
4/74
27 . * n o
7.
7,
7.
7.
4/
f >/1 H / 7 4
?7 .pr,'-,
nkFFf'HO^'F
- 'Pi 1
«
SnpFfifF
DO-''
^*a«
LAKE
8 0 f)
«nn
i nn
p nn
n.O.
■*SAT
07.059
117.T31
) 1 5 . pi0 4
91 . 1 1 1
9 0 * A 7ft
Q3.C90
P 3 . 7^3
0
1 0 5 . i ?«
90.123
1 1 3 . n°5
93.H 7
1 0 9 . 1<55
PM
FI f i n
fUtftJHtflfltt
ALK
MFO/L
«■#****«»
P. ?00
p . «. 0 0
P . 300
p . 4 n0
P . 400
s . i on
R, 100
P.cSO
7.9nn
8 . 7 0 (.)
p , ?nn
3.100
P.POO
2.000
3.100
3.400
3.4P0
P . 900
p . 4 no
92.222
p1• 79 n
p.20u
p . 7on
l fi 7 . * 0 9
’ 03.*113
R* 5 . 7 1 4
P . 1 50
H. 5 0 0
H . 4 no
p . 4 no
p . 7 oo
Q . ?n o
a . i on
P 9 . 4 12
95.122
P P . P 7.3
° 6 • 2^6
3 . i 00
2.590
2.^70
2.300
2.290
2.400
2.390
2 . 79 n
2.420
2.^40
?. ?* 5 0
3 . 47n
2.540
?.»?n
3 . 3 911
3.290
CCMO
Fiei _n
«*«**#**
64C .000
6 7 ^ . onn
6 1 o.ono
0
0
6 90.000
6 7 s . Onn
610.000
5P<= . o n n
5f l n. ooo
6 3 c . ono
BPo.nno
64 0 , 0 n 0
6 0 c .onn
40^.000
5 P C .ono
51 ° . ono
68n.000
6 9 c , pnn
730.000
7 5 ^ .OnO
74' =*ono
<ECCHT
Cw
**#**«##
20.000
35•000
0
2 4 . onn
' 1 7 . non
1 fl. o o n
6 3 . non
1 0 0 . non
52*000
1 2R . 0 0 0
5 0.000
f»
43.000
3 5 . OOn
0
*7.000
42.000
20.000
31 . 5 0 0
43.000
0
0
3=
LfiKE
t ak F
s
t
* t I n tv
D a Tr
-7
N C 3 -^
ye-/I
#######»
1 /l S / 7 ' ’
7/ S/7?
V
5/71
4/11/??
t;/ H / 7 T
ft/ A / 7 1
7 y q/7*»
1^
.077
.1 17
. *97
.lift
.
. n , (' f*P
si
id
fjr ?-rv
Mp/L
- r . oo ?
. on?
~ r , r.f)^
. or|->
- o . Of)?
-0.004
- (■. 0 0 4
- o . r-n 4
m / i n/7?
1 1/ 1 5 / 7 ?
-n,nH
.1 -*7
- 0 . 0 04
-0.004
lp/?n/7?
-0 .0 0 4
-n . o o 4
?/91/7A
T/ ft/74
.^as
.004
1K ?
.'lil
.
i/?n/7h
- 0 . Pf>4
A/ V 7 4
4 / i 9/74
. 1 cp
. 1 ??
.m o
c;/
ft/
S/74
4/74
ft / 1 R / 7 /i
-0 .0 0 4
.015
MG/I
att4}O»4t«0
- r\t A f ) P
1/ I ft/74
? / ft/74
- p11
H
F arF
■r . n riq
- o ,nn o
«/ «/73
<3/11/ 7 ?
nH’F F C w O M f F
-
o
.
o o p
-o .004
- o , 0 04
-0,004
. 00^
-^.004
. Of l f t
- 0 . 004
- o .n o4
-0.004
-0.004-
. OM)
. o1n
• r79
.04 0
.OKI
. o?n
- 0 . 0 10
-o.oio
.09 0
-o * o i o
- 0. 0 10
• r>?\
-0.010
.on)
- 0 . 0 1 •)
-o.oio
- o.no
. ORO
.06 0
•
n p n
-o. n 1o
. n?5
T>w
OD.P
MG/L
##«*#((##
M«/L
1.S50
1.4^0
1 . 10 0
? . 0 0 f>
?. ?o^
i .o^o
1.4*0
1 . n?o
l.?K>
1.130
1.cQO
1 .P?*1
? . 47 0
-o.^o?
-o.no?
. oo«
. o 15
.on?
. o {) 3
- rt. o o 2
.005
.007
-0.002
.010
?. 77■
>
?. 9f t0
1.790
-0.002
- n . 002
- 0 . OOP
- o . 002
-o . o o 2
. on2
,oo3
-n . o o2
1.1* 0
1 .1^0
1. * 3 n
. oq2
-0.OQ2
-0 . oq 2
l . f t sn
?.5«n
T-P
MG / L
* w * * <nt<nt
sio?
wfi/ L
.0^8
# . 1 fln
.
•
.
.
0
7 . POO
7 . 1 00
R . 7 0O
6.000
ft. 0 0 0
3.?60
5 . ?9o
nftl
046
n?7
1 ?fl
. 0?5
. o?5
.073
. 0 ?0
. 0?9
* 0 ?4
• 0?7
. 0 37
.041
.044
.0S7
.049
. 0 a4
2.400
4 -flfiO
5.100
5.9R0
S . n fl 0
5 . 1 "50
ft . 7ft 0
6.020
.o’ l
.OM
5-^30
ft. 1 50
. 0? 3
8-130
1 .?R0
4.020
I
*
| A k F_
S T A T T ON
2
OKFFCMQPCfr
CA
K
A. A.
M fV L
•» U ff # ■[>■»«
o
i n
n
n
n
n
t #
A
,
A
^r,
,
A .
A .
* * * « * # » »
#
1P . 400
0
n
1 9 . 0 0 0
0 1 . 0 0 0
0
0
?.200
1 R . 8 0 0
0 6 . 2 0 0
0
n
4 5 , 3 o n
1 7 . 3 0 0
0 0 . 7 P 0
n
n
43 . coo
4o.non
0 2 . 6 0 0
0
. 5 5 0
11.000
17.200
1 ft . OOO
16.700
7?.000
74.900
7 8 . O0O
8 8 . 4 00
0
A f . . onn
• 0 45
.357
0
0
0
^ ? . 7 o n
c;/
H / 7 T
f S . f t M
4 . 0 * 0
5 7 . 7 0 0
* /
4 / 7 °
e q .q n ri
4 . 5 3 0
5 2 . 7 0 0
7 /
P / 7 3
61 . P ^
5
Q/
9 / 7 3
ft
4.610
3.«on
4 . 45 n
3 . 7r)0
3.^00
3 .onn
1n /|n /7 ?
11/15/73
1?/?n /73
1/16/74
? /
6 / 7 4
2 / 2
1/
3 /
6 / 7 4
3 / 2 n / 7 4
7 /«
5 1 .nor,
5 3 . '1'in
5 n . or 0
c4 . R- n
^ 6 . n0 o
4.000
4 . 1 0 0
4 9 . 6 ni l
1 1 . ft n o
8 4 . 3 0 0
54 . 4 0 0
5 3 . 0 'l o
c fi . n n n
3 , 8 0 0
4 2.400
1 7 . 2 0 0
o i . n o n
6 7 . ?rtO
n
3 . P n n
4 5 , 4 ^ 0
1 7 . 2 0 0
3 4 . 6 0 0
c 3 . o f! 0
3 . ° 0 n
17.00fl
8 6 . 1 0 0
5=; . i o n
4 3 . 1 no
6 1 • 5 nn
0
10
1 / 7 4
5 7 . o o n
4 . 0 o 0
4 / 1 9 / 7 4
Ki.ono
4 . 7 0 0
e;/
8 / 7 i
t fv .f.n n
4.5O0
55
6 /
4/7/i
6
*
^ 3 . 6 0 0
f , / t P / 7 4
1« , 0 0 0
3 5 . POO
4 3 « 3n0
47.000
47.000
45.000
4^.400
50.00 0
4 /
MG/L
* •» •» # «■ «■« *
- f f
n
1 P . non
18.000
19.70"
6 l . o n o
t
**G/L
* + *#■*& « «
0
0
0
4 • n nn
4 * ? oo
4.130
O / I J / 7 3
* « » » » « » »
S r 4
0
2/ 5/73
1/ S/73
4 / 1 1 /73
nno
MR/I.
o
0
0
51 . ^ o n
5 8 . n o rj
^l.ono
.
«
84.00 0
S 3 . non
87.000
P O . 00 0
q p , ono
4.100
3
Pi]
CL
5 7 . or o
CS , q o n
c 3.ono
5 7 . 3 r r-
1/I *'/7i
-
9 n p F fifF
n a
D a TF
LAKF
4
r
nn
. n n
5 6 . n
. ? 0 0
3 . p 00
. 6 0 0
5 2 , 2 0 0
1 ft , R 0 0
0 4 . 5 0 0
n
0
0
n
5 6 . 7 ^ 0
0
19.400
1 O f , . 800
9 5 #4(10
59.800
. 4 0 0
I P . a 0 0
0 7 . 7 0 0
6 6 . 0 0 0
.
200
1« . 6 0 0
08 .2 0 0
6 fi . 1 0 0
. 3 5 0
- 0 . 0 2 0
n»
tT)
4
«•
L A* h
n
STATION
atp
<*SAT
/ L.
1 1 . ono
q
.500
• 200
*/T*
1 6 . 7 ^ 0
Q
1 /
* / 7 1
1 9 . 1 "■ n
p.fcoo
20.700
a . 1 no
? 4. ^ n o
7 . * 0 0
5 /
/ 7" »
P / 7 1
A/.
4 / 7 1
? H . T 0 n
7
. m o
7 /
« / 7 i
? 9 . o n p
a
A/
4 / 7 T
1 f! . '1 P p
. 100
0
d/1
1 / 7 i
2 « . 5 "■ a
° . 1 00
0 / 7 “*
? a . m o r:
7 . 1 0 0
1 0/1
1 1 / 1 5 / 7 1
21
1 1 / I P/7**
PI
1
7 • n 0 0
. ^ n r
7 »l o o
21 .(SOP
7 . 7 0 0
1 *5 . 0 0 P.
0
1 / 1 6 / 7 4
21 . p o p
7 . 6 0 0
? /
6 / 7 4
? o , n o n
0
? / - 5 1 / 7<1
1q . p n o
7 . 4 0 0
6 / 7 4
1 « . s n r
P . 600
1 / P P / 7 4
? 0 . 7PP
p . 1
1 1/ 1^ / 7
t ?/?f'/7"<
1 /
4 /
1 / 7 4
P S . P O P
4 / 1 Q / 7 4
7
c;/
P 4 . A n n
A, /
« / 7 4
4 / 7 4
A / 1* / 7 4
o
<
n.o.
n.n.
T F*<P
?/
4 / U
*
ke
nKEf^MnRFP
-
p i
i
*
ROTT0m
nn~r
1 /I
l
1 . c n n
. 900
. i n
0
00
7 . P 0 0
7 . 7 no
A . *0 0
0
6 .10O
? 7 . p or.
7 , ? n n
P 7 , 4 n
»9 . * P3
9 4 . P45
92.471
9 0.000
9 0 . 4 76
92.4*5
« P . Tf,q
f)
1 0 3 . P46
fl7.A*4
79.C4S
A2.0S5
R 7 . c n (i
P 7 . P^5
P4 . 4 4 4
90 . ?17
79.6 7 0
95.4^3
90 . 0 0 0
85.714
QQ.cpg
7ft.6 7 1
77.778
PR.PP3
Pw
M-K
FIFLn
P. P00
p. 4 00
P. 6 00
n. 4*5n
Q . l 00
n . l 00
fi. 5 4 0
p , 0 0 (1
a . poo
f l , 000
P,
«.
a.
R.
000
050
?00
?o 0
B .5 0 0
P . 15 0
P. IPO
p.son
p . 4 o0
P . 40^
p . a0n
P .500
7 , =10 0
MFO/L
CCMP
FIELD
SPCCHI
CM
#«««««««
*#*«*«##
650 . 0 0 0
f , 5 c . noo
5 5 5 . 0O0
0
0
6 9 0 . OOO
6fir.OPT
610.000
5 B 5 . 00 0
5fl0.no0
630.000
P. 7 2 0
630.000
610.000
580.000
64 0 . 0 0 0
6 4 c . 0 Pfl
49=.0^0
6 1 o . 00 0
0
0
0
0
0
n
n
0
0
0
0
n
0
0
0
0
0
0
P . 700
5 5 1 .0 0 0
0
1 . 4 5 n
6flo.ono
700.000
7 3 2 . OOO
0
7 5 6 . non
0
0
3.2^0
p. 9 0n
p . poo
1 . 2 00
1,440
l.^6n
P . 320
P . *20
P. * 9 0
P . 3An
P . 100
0
0
p . 400
P . 300
P . 770
?.4P0
P .
670
P . « 5 0
1.1*0
1.270
74 6 . 0 0 0
0
0
1
<
I )
l a k e
:
OKEFrHDPFE
-
p 1l
*
I
| AkF
*; T a t T r N
n at f
<t» «■«■B * «• W
1/ I S / 7 1
7/ 5/71
1/ 5 / 7 1
4 / 1 1 /7T
S/, » / 7 1
A/ 4/71
7/ 4/71
«/ o/71
o / l 1/ 7. 1
ln/in/7i
1I / l 5 / 7 ^
1\ / I 5 / 7 1
11/IS /7 1
l?/7p/71
1/ I f t / 7 *
? / ft/7 i
7 / 7 1 /7A
1 / Pt / 74
l/?n/74
4 / 1/74
4/10/74
S/ 8/7*
A/ 4/7*
A/1H/74
qnjTC^
O
,v C 1 - m
KC,/|
# « a » # tt4 «
-143
.nil
. 1" 4
-n.no*
t n7f.
.071
- o . aoa
- 0 . 0**1
.ni ]
. O?0
. 1 PP
A
r,
.077
. 0 nc3
- o . n«4
. ] c 1
,r>4F
.m i
.1 ^
. 11 ^
. log
. 0» c
■'1,^4
rvQ?-N
b*r-/\.
*####*#*
-f" . n o?
. rt01
- 0 . 0 p4
- o . n 07
- o . op?
- o , n 04
- n . rtpP
- c . non
- p . 004
- o . P 04
- o . r>n4
P
r
- r . nr )4
- o . n p4
-0 . 0 0 4
- n . 0P4
-0 . O f i *
- o . on*
- n . oo*
- o . on4
- n . n 04
-0 . op4
- r , on4
ft.H3-K
*13/1..
■
»«h h h h m h
»
. 0^0
.mo
. 070
. 010
. 010
. o?o
-o.nio
-n «M o
. PIP
-o.oio
-o.oio
o
p
.01*
-o.oio
-0, 010
-o.oio
. 010
.07 0
.070
,0*0
.Pill
- 0 . 0 10
.177
T kn i
o o
-P
T-P
* 6 / 1..
hr
/L
MG/L
S 10 ?
w^ / L
#»««««««
**■»###»#
*#***•»#*
*»*«nnnn»
1 . 7 10
1.470
1. 1 4 0
1.15ft
.40 0
-0 . 00 2
.002
.00?
-o.op2
.007
.003
.1*7
.0*5
. O^ft
. 04*
. 1 72
8 , 400
0
7 . OOP
7.300
8. son
.osp
. P13
. ni8
0
0
. 075
. 075
.PS3
.011
. 0S7
» 0 ft 3
3« 150
5.41P
1 . 74 0
4.P20
0
0
7 ♦4 P 0
4. 7 R0
4.790
5.980
5.140
ft. 1 00
ft. A5P
?.om
1 . «4P
1 . 72 0
1.710
l.lftO
1. M O
0
n
1 . lflO
i . ^ on
7.720
l. aln
1. a00
?. 13a
?. s 9 0
7.060
1. 0 0 0
1 .49"
? .nso
-n.op?
-0.002
.010
-P.op2
.OU
0
0
,002
-P . o 02
-0. 002
-0. 0 02
.003
- 0 . 0 02
.no's
-o.o p 2
.002
- 0 . o 02
.002
..no
.010
, o*g
.0^4
.non
. P73
.0°2
.0*7
6 . opo
ft . 4 0 0
6.020
5.130
5.*50
7.170
I
I. A F
»
«TflTT' n K
f l AT r
CvJ
<
0 K E F(' H 0 n *■
'F
“
p ll
fl
t'OTTO
Ma
K
CA
wr
A. e .
MP/ L
«.###*###
A. A.
a . A.
#****«»■«■
<HHt <>OHUt
»###*#♦*
#«*««*««
##*#«###
0
IP . ft0 o
17.000
19.100
1Q. pftO
1R . 6 0 0
l p , nof
I P . i nn
4 4 . ? ft0
\?. qOft
« Q . ft 0 0
p 7 . non
8 ^ . no n
AC) . ft 0 0
0
0
0
n
0
0
0
0
<3 3 . 3 0 0
7 3 .OOft
I 5 . 1n0
74.^00
ft
16.0ftO
ft
7 7 . ftOO
16 . M O
1 7 . ?o o
1 6 , 0 ft (1
1 7 . ?ftO
1 6 . ftftO
1* .000
8 fl . ? 0 0
86 . ? 00
PO . ft 0 0
♦»##*»**
1/I ^/ 7
? / S /73
1 / S /73
4/ U /73
e;/ H / 7 1
A/ 4/71
7/ 9 / 7 3
0 / <1 / 7 ?
Q /n /73
1 ft / 1 n / 7 3
11/ 15/73
1|/!^ /7 1
11/ 15/73
1? /? ft/73
1/ 16/74
? / (S/ 7 4
?/?1 /7 4
7/ 6/74
1 / ? 0 / 7 /'
4 / 3/74
4 / 1« /7 4
<;/ « / 7 4
f / 4 / 7 /1ft / 1 8 / 7 4
LfiKF
(I*##*#***##*)!##*#*##*******##*##
A p .C nr.
8 7 . 1 ft ft
* 1 . ono
5 7»3 o r
=q. 3 r n
6 ft . 6 ft ft
ft] . 1nn
5H. nn0
6 1 .Q fi')
5 ft . o n n
5 ? . . n ft ft
ft
f:
i t « . »i ft 0
5 5 .? ftn
K 6 » ri n (i
•51 . n n ft
8 4 . ;(fto
4 7 ,f!f'n
5 4 . r ft 0
. nn n
8 7 . ft ft '■
6 3 . ^ ft ft
6 h . r ft ft
4 . 3 0 ft
4 . ft 0 ft
4 . ft fl 0
4 . 1 SO
4 • 0 ? ft
4 . 1 ?ft
4 • 6 f l ft
3.^40
4 . 4 1 ft
3 . 7 ft ft
3 . 7 flft
ft
ft
3 .« O 0
3 . 6 0 ft
4 . 4 nn
3 .< 3 n n
3,000
3 . 4 ft 0
3 . 9 ftn
4 * 7 fl ft
4 .S ftft
* . 1 0 ft
4 • P ft ft
e; 1 , c no
6 0 « ft ft 0
^O.ftftO
8 ft . 4 o 0
5 4 . 70ft
5 2 . 7 ft 0
4 fl . G n (1
4 5 . B ft0
3 4 . 6 ft 0
3 5 * ft r 0
3 8 • 6 ft 0
0
ft'
4 5 . n no
4 7 . ftftO
4 9 ■6 ftft
4 2 • 4 (!
4 S * 4 n fl
4 3 . or o
47 . 6 r 0
4 8 # ? n ft
R5.6T0
^ 8 , 3 ft 0
3 9 . ? " ft
rL
SP4
MR/L
ft
1 7 .POO
1 g. pft ft
1 Q . 8 ft ft
14.000
T-FF
MG/I_
0 7 . ft o 0
q ■>, 0 0 0
96.400
Oft. 7 9 0
ft
A 4 . ?ft0
P 3. 6 00
90.700
1 f t ? . 700
9 6 . ft 0 0
Q7 . 1 0 0
q fl . 4 0 0
^ ( 3/ L
ft
0
0
n
0
ri
0
0
0
0
0
n
4 4 • 4 ft0
4 8 . 5 ft0
7 0 . 1 ftO
5 7 . ?ft T
50.40 0
6? . 1 ftft
' 57.9ft!)
6 0 ■1 0 0
6 4 . 3ft 0
6P . 4 r ft
n
0
.010
.074
• 65 3
0
0
ft
0
ft
n
n
o
0
0
.490
.41ft
.18ft
tt
0 a Tr
|F M P
cti-r
n.o.
wr/L
« -it ! ! « # « « «
7/
5/71
1 / c,/7 ">
4/1 1/71
c / f l/71
6 / 4/7-3
7/
<5/7^
n/ 4 / 7 1
q/ip/7i
1 0 / 1 1 /71
1 1 / 1 5 '71
1?/?o/7i
1 / I *. / 7 4
1 1 . no o
1q
. n n ft
P 4 . non
21 . , n
25.
n r
ton
2 « .^ 0 r
3 1 . ^0 r
3 n ,son
JH.KOf;
2 *. 300
7 . ? on
0
7 . fcftO
s.irm
21 , ‘i n r
1/
6/74
2 n . c n (1
4/
1 /7 4
2^
. ?r n
t n .sn n
P /74
6 / 4/7/i
f.Qijn
? p .n n 0
1 s . (1 n n
3 /? n /7d
4 / 1Q /74
11.700
7 . *00
7 .P0«
2 7 .4 « n
2 4 ,? n i!
2 n . c;n f
1 *4 . n n 0
C/
c.?(in
7 ,?on
<
3 . orto
*5. 3n n
p . ?on
p . non
7.600
10 . on o
p.?nr
7 .nno
7 . 7nn
P . 100
7 . a n0
A /74
■ ? / n \ /74
? /
P , 4 (if
LrtKF
n.o.
^ S ftT
(nnnttnHt
fl 8 . A 7 f)
9 P * <5?5
137.*47
P6.ft67
Q 2 . P C7
P8.4*H
97.297
n
97.436
R7.P"5
1 f.15 • a « 2
<51 . 1 7 6
9 3 . 1°2
r r ,°Hq
P 1 . 7 7 0.
111.111
01.111
03.113
1 6 . nno
1n1 . 7 7 0
*56. ? 0 3
102.469
n^FKCt-iDHFF
-
pi
1
*
PH
FIF( n
**###»#*
flL.K
npn/L
##*#*(!*»
P. onf i
1.10ft
7 ftft . ft0 0
H. 4n0
a . 4 ft n p . 40?
P . 45ft ■
P. . 4 0 0
1 . ft0 ft
2. a00
3.100
3.480
1.280
1 . nnn
? . ft Oft
? . ftRo
2.35 0
?.43ft
2 . 300
2.390
7 . ftPft
p . spo
2 . ^ on
? . 740
1 . 4 5 ft
2,*9n
7 . H6ft
3.300
1.26"
66 0 . 0 0 0
6 6 n .000
n
P .P D d
n . 4 7 ft
fl . 0 0 0
. ioo
P . ? 0U
p , onft
R . ?no
p . 1o0
p . ->50
p . 05 0
n.400
« .300
f. . w o o
n , ? ftft
P . 1 00
P . 100
r
cc^n
F If Ln
* O■
»* tt•»#
0
64S . 0 ^ 0
69=: . (iflQ
610.00Q
57ft.ftno
57ft . QOft
6 5 o . non
61f t. 000
4 3 s . 0 Oft
65^.000
4P ft . fto (1
5 f 0 . ft0 0
65 7 . ft0 0
6PK,ono
45 0.000
7 2 0 . ooft
7^= . 000
7 5 c ,OO.ft
SFCCHI
rv
20 . 00O
? 4 . 0OO
43*000
34*000
13.000
20.000
6 9 . noo
1 0R« OOO
3 6 . OftO
70.000
PO. ftOO
0
50.000
2B . 0 0 0
ft
45.000
* OftO
lrt. 0 0 0
30 . o o o
3 « . ooo
n
o
A13
n»Tf
1 / I 5 /71
? / S/7-»
3 / <^/ 7t
4 / 1 ] / 71
* / P/7?
ft/ A/71
"V Q/73
p/ q /7i
o / 1? /7 T
l n / l l /73
U / 1 ct / 7 ?
1p / ? n / 7 T
1/16/7*
?/
ft/74
“*/
ft/74
? / 3 1/ 74
i/pn/74
4 / 3/74
4 / 19/74
q /
R/74
ft/ 4/74
ft/1fl/74
N'C T-r
vr/i.
««««#«#«
. r ,ft Q
-0.004
. ^4ft
- r,. nnp
-n.nflo
•I’ .POP
.0*3
-n . o*4
.on ?
.11?
.1
. 0 39
* O^P
•-0 I
,!lSP
. ?oo
. I1«7
. OPft
. ?«u
.■
i1 9
c^ n
M r /I.
* -tUt•»* tt* ■
!»
n
-O.nn?
. 0 (1?
- n .t n4
-n.no?
-n.no?
-r.. o 0 4
-0.000
-n.OOf’
-0.004
- o . nn4
-0.004
-P . 0 0 4
-(1,004
-n . 0 0 4
“ 0 , 0f)4
. nos
. n\?
.004
- 0 . 004
-0.004
-('.004
-0.004
L/sKf
DkFFTHo^Ff
- PH
##♦ ##»»*#«*»«##»*######*********
NH3- K
Tk m
M G/L
««-»## a
M G/L
« **
.0*0
. o?o
.034
. 0?0
.0^0
. o?n
0
-0.010
-o. oio
-n.m o
-o . m o
.078
-n . m o'
1
O
•
«
-o.no
T - D
MR /L
M G/L
0 02
. 002
. 004
. oo2
- o . 00?
,oo2
-0. 002
-0. 00?
-o.no?
-o . n o 2
.on
.014
\ . ft4 f)
.003
-0.002
1 . AHC
1 . *90
. ft 7 n
1 .OftO
. 0?0
• p? 3
. *1 ft
1.910
1 . P30
1.710
l.o?o
S T O ?
m g
/L
« « « « « « « «
5.040
n
1 . 4ftD
? . ?00
?. ?no
1, m o
1.1*0
1 .?lft
1 . ft 1 o
1 .^00
1.060
1 .^ftO
.030
. 1)0
* 0P 0
OR-P
# «««# »«»
1.*90
i.ftin
#
.
-n.oq?
- o . no?
-o . no2
. oo3
- 0 . n o2 '
. 002
,on2
-0. 002
.1^
. 073
. 064
. 064
.0^3
0
, 0?5
• 0 ?2
. oso
• 0?7
.03?
. 049
.037
.079
7 , A? 0
0
fl.400
6.00 0
B. 500
7 . ft0 0
5.^00
3 • ??n
3. »4 0
2.000
3.*20
3.300
5.370
6.450
. 0 7ft
. 0^6
.075
. 0 ft4
S . 01 o
950
5.900
ft. 150
4 •7?0
. OftP
• 0? 4
* Of t O
5 . 040
.019
ft . f t O 0
S. 390
» t n n t f l # ( n n n n n m
iLftKF
n «T r
£--fl-
Ni t
fl.A.
««• *<H*
1/1S/71
?#i,<3nn
r>/ <5/73
S 7 . S 0r
c 4 . n0 n
1/
S/71
4 / 1
1 / 7 i
ft/
7/
P/
0/1
W U
1l/i
4/71
9/71
0/71
P/71
/71
5/7"*
t;/ 8 / 7 1
1/1 f t / 7 4
P/ ft/74
P / ? l /74.
3 / ft/7A
?/pn/7*
4 / 1/74
4/10/74
=5/ 8 / 7 4
f,/ 4 / 7 4
’ 8 /74
K
yp/L
«*«*»«««
=7.000
3.0^0
C q ^ o n r■
r0 . 0 0 c
5 5 . non
= ? . nn0
5 s .0 00
3. q fto
4, non
4 .1 n0
. ft 7 0
4,240
3 . 8 0 0
4 . 0 4 0
4 . 0 0 0
3 . 4 0 0
5 ft. 0 " 0
4 . TOO
Si . non
s p . o n r,
A . POO
5?,flpr
pq.tmn
ft 1 . 0 n n
F 7 .onn
ft4 . .0 n r
RH.npp
A. A .
4, 1 n0
4
3 .Pon
1.800
* .?no
s . 4
4
00
. S o n
*=. 1 no
4.1
OKFFCHOHf-F
Cfl
4 . POO
4 .100
S ft, ri0 r
c O . 3 0 r,
ft 1 . 1 n c t) .q n r.
i n n n t « # » ( n n t « » K # t t # « « #
nn
- »11
cl
A. A .
» 6 « 4 e tt4>«
wo/i.
» «. fl. C-0-■
!»* O
5 1 . 0^0
tp . 0 0 n
I 0 0 . n{) 0
ftO . 0 0 0
5 2 . or 0
49 . 1r0
S 4 .ftoo
S4 . S O 0
58.100
46.400
3B. 000
3 1 .Ono
4 4 . POO
46.000
44.^00
48. ? 0n
41**00
4 S •4 n 0
4 ? . nr 0
s 0 , p 00
c; 2 . ft 0 n
S5-A00
Sft.400
7 4 ,40n
l 0 . non
1 8 . onn
18 , 4 n n
10,100
10.100
lo.soo
17.100
4 n , n nn
11 . s n o
17.100
17.000
1ft. l
1 ft . ft 0 0
1ft . 7 0 0
1 7 . son
1 =;. n 0 0
2 1 . ?no
1 0 . ?no
10.400
10.^00
8 ,4 0 n
fil, 0 0 0
8 7 . non
flft. noo
og.non
8 8 . non
Oft. 8 0 0
01.090
O S .4 0 n
7 0.800
78.400
O P . noo
8ft.fton
89.400
88.800
ft 1 . 2 0 0
81.HQ0
1 ? 0 . non
00.000
03.400
0 0 . 3on
o 0 . 4 0 r>
T-FF
SC 4
VG/L
'■<G / L
«"l>« « » « 4>tt
n
n
0
0
0
0
0
0
0
0
0
0
4ft . 7 0 0
4 4 • 8 ft0
70.300
57.900
47 . 3 " 0
ft7 . 7 n 0
S7 . 0n0
58 . ? n o
ft 7 , 4 n 0
ftO . ? n n
0
0
0
0
0
n
0
0
.370
. 043
.12?
0
0
0
0
0
0
0
0
• 4on
. 360
. 0 40
A15
«
j fy k- K c; T f T T 0 f'
n«rr
»*«###*?
1 / I S /7 3
?/ S / 7 1
1/
S/7?
4/11 /7?
8/ B/71
ft/ 4 / 7 ?
7/ 9/7?
fi / 9 / 7 1
Q/ 1 ? / 7 T
1o / l 1/ 7 1
1 1 /lS/71
1lZl^/71
11/ I S/7?
1? /?0 /7 ">
1/16/74
■?/ f t / 74
tf
">
^p
p . n.
C« - ^
Mp/1
##««««#«
3 5 .n n o
q.?on
Ift.snn
9 . 1 nn
1h . 1 n n
7
2 1. n nn
?s.8n n
, «r><)
7 .flnn
£H.?nn
?ci. ?n n
Jft.mo
? 1 . ? n f)
. 7n n
7 . s o n
A , 9 o n
c.AflP
n
ft .?on
7
.
p
r> o
7 , Ann
?1
P . ftpn
, n n rt
,3 . i o n
21 * 1.o o
7 , P n n
?o.
« .000
0(1
? / 9 1 / 7 /*
1 / ft/74
1 H.onp
l^.^nr
2’
i. m n f•
7 »7 ? 0
4 / 1/74
4/19/74
2' s. pnn
ft. ^o n
1/ ?r / 7a
8 / p /74
ft/ 4 / 7 4
(,/
1P / 7 4
2 ? . son
?4
27 .1" n
27 . ? n
D.O.
*SAT
tnnn*****
7 . 4 0 0
7 . c’ no
7 . 9 p n
f~, 9 o n
ft. ^O^
ft . °0 "
Pw
8.100
p, m n
fll • 0 5 1
H ft . (• *. 7
91.463
«5.1«5
ftR. 154
0
78.4H1
fl7 « fi r S
fl. 0 0 0
P. 400
s . 4on
n . 4 0 ()
7,900
P. 4P0
p . OOO
p . m o
fl. 1 s 0
P . 1 00
p,?nn
o . ooo
p . 1 on
H . 1o0
a . ISO
p . j S0
R6 • ftft 7
9 5 * C S6
91.176
«ft • ftft 7
flft,QS7
79.^70
33.ni ]
P7 . 7 7 8
P 2 . 143
9 2 .Q41
«2.143
7b . c 41
«l.c=; i
U. K
FIF|_n
»*#»«##«
90.19ft
9 3 . P 14
7 . 4 0 0
21 . ? n n
0
D K FFrH O ^FF-Pli
*
P D T TCw
-tnnnnnn**
1R
LftKE
0 . 10 0
« • 100
P, 4 00
P. S00
P , 7n o
7 . nn 0
5 E C C HI
wpo/L
«#*#»#««
FIF L n
#■»»#•***•&
O
#«■«■»#»#•»
l.nqn
6 7 0 . OftO
65( 1. n « o
6 4 c . nn o
n
n
n
a
0
0
0
0
n
0
n
n
0
n
n
0
9.P00
? . H 0 f>
1.10 0
1.440
1.32^
? . 9ft 0
? *ft?o
2.14 0
? . 45 0
0
n
2*200
2.370
? , 74 n
.
CCND
2. 370
?.SOO
2.720
1.530
?. «00
?. 900
n
0
66c.non
6 9 8 . ono
6 1 0 . on o
570 . 0 0 0
5 7 e . 0 0 (i
6 5 0 .Ono
65n.ono
650.000
610.000
4 7 B. 0 no
6 5 5 , OnO
550.000
600 .0 0 0
657.0^0
6fl p * 0 r>0
69p.nno
72P.0P0
■1.15.0
7 5 5 • onn
1.110
7 5 S . ono
0
n
0
0
n
n
n
n
«
(rtP-F S T ^ T T G N
n M f
^
r^ T T C v‘
NC 1-M
» n / \
#*»»«*#*
1/ l 5 / ? - <
3/
3 / S / 1? !
4/1 1 /7 T
=/ P/7T
f,/ 4 / 7 1
7/ 0/73
n / q/71
9/1?/7i
1o / l 1/73
1 1/ I 5/77
11/1 " ■ / T I
/I5/71
?/?o z?^
l/ ^ / 7 A
3/ * n 4
3/3 1 / f L
3/ 6 / 7 i .
1/5P/74
4 / 1 /?4
4 /iq/7 i
e; / H / 7 4
f-, /
4/7 A
f- / 1 S / 7 6.
11
1
«#■»««««#
.'in 7
. .17 4
.tan
- n . n o <*
. r>4 7
-n .n o f
- n . n nh
«n,fjOP
- n
. nn5
.004
.
LiKE
OKFFCHOHFE “ p 11
*
tut####***##*###*#*####*#*#*'##*##
0*4
n
0
.1^1
.14?
.'^ 7
. nA 0
.11?
,nf?
, 1 ^
.iioq
. r - wo
. m t<
,n r c
NO?- ^
MT- / L
«# ««# »»#
- o , no?
. on3
- o. oo?
- o . o0?
- n . «i n 4
- n . nf i f l
- o . o or
- n . oq4
0.004
-n,no4
-0.004
n
o
-0.006
-0.00/.
- r , on4
- n .no4
. flOA
. 0^:5
.o^q
-0,004
- n .o n*
.on4
- o .o n
4
M 3 -f>
.
T*M
mr/ l
*»»«#««a
MR/I
\ n «. * •&■»■
»
.non
. ni n
,0?4
.04 0
.0*0
. 0?r>
-o.m o
-o.oin
. o?n
-o.oio
-0.010
0 .
(!
.045
-0 . m 0
.03 0
- 0 . 0 10
. 1 0(1
. oso
, o^n
. 0?{)
- o . rt ’ : i .
-o.oio
-n . 0 1 n
ntt-p
T- p
*tt
/!_
■»##■it
? . ]7n
. n05
,14 0
1.**0
1. t* o
.002
.no5
. o o2
-n.oo2
,oo2
.072
, 0*3
. 0 73
,\ol
1O f)
? . 4 on
2.190
1 .430
1.3*0
1 .«1 o
1.570
. q*n
0
n
]
1.*50
?.Q5 0
1 , P1 0
? . P 1 <1
1 ,«»l 0
?,olU
3.140
1 .?«')
1 ,^5'i
1 . *30
-n , o 0 2
-n.no?
-n, 002
-0 . no2
. 0 14
0
0
. OOfl
.003
-0,002
-0.002
- n . 002
-O.002
. no3
-0,002
-0."02
-n . 0 0 2
-o . o q 2
. iin
.03H
. 0 34
,0*4
, m<5
.034
0
o
.03*'
, 0 33
.095
• 0 Qri
. 1 ?A
,n«2
.0*2
.0*7
.030.
,074
. 0 14
Sin?
«G/L
8 . TOO
0
R.^OO
* . Qno
fl. 5 0 0
7.500
6.000
3.150
3 . 5 <* o
2.230
3.6^0
0
n
3.100
5 . 170
«i. 5 ^ 0
*i . o 7 0
* * 4 70
f t. 4 0 0
f t . 11 0
4.P1 0
5.^40
5.470
* .320
>;
"J
4
*
[_<wr
T ft t t f 1 is
n a Tr
-i
m
k
MA
Wf’ / L
**
«»*■>* * # # ■
!>
A18
0
57.?0'l
s ? . aon
57.50=9.700
ft ? . 0 0 n,
ft 1 , 4 0 0
S7,oon
* O . Q 0 fl
4 o , fi o r
55. nno
r
A
5 3.000
c 4 , q 0 ri
5 ft , 0 0 n
c 4.non
5 ? . nno
e4 . o00
7 0 . f- n o
M .ooo
s 7 ,ooo .
A 5 . ^00
f
tM
,
r A n
o x f F.CHOWFF
- Pti
»
ny t ov
A. A.
1SI'S'71
?/ 5/7^
3/ 5 / 7^
4 / 1 1 /7**
5 / fl / 7 ^
ft/ 4 / 7 ’
7 / <1/ 7^
R / <i / 7 ?
0 / 1? / 7 3
1 .i / 1 1 / 7 3
U / 1 5/ 7- 3
11/1 S/7-5
n / 1 s / 7 ->
1? / ? 0 / 7 ?
1 / I *H/74
? / ft / 7 A
P/^l/74
V ft / 7 A
■
>/ ? 0 / 7 A
4 / 3 / 7A
4/19/74
q / H/ 7A
ft/ 4 / 7 i
A / 1 fl / 7 4
L A KE
it
0
4.100
4 . ?no
4.030
4 . 050
4 .?3f1
4 , ft70
T. Rqo
4.750
3 . «nn
4 . OftO
0
n
3 . Dn o
■
5. f t n o
4.400
4.100
3*^00
3 .000
a. mo
4,000
A . ft 0 0
s . ? on
a .onn
CA
A. A.
*>n
6 . ft.
»»«44«»4
■»*»<*»<>*»
«■&»#■!>###
0
5 5 . Ann
n
10 .00 0
1 « .ono
\ r . ■>n o
I Q . 7 00
S 3 . 7(i()
I <3. 4 O' )
lft^.noo
fl3.no:)
aq . ooo
p * . noo
o q .n o n
q 4 , non
q#S . ftOO
f t O. Of ' f l
51 , o, o n
4 8 . 3 00
cp.eoo
4 7 . nrO
43, a n o
3 3 . 4 no
4 3 .a n0
0
n
4 7 . non
4 8 . po n
4 9 . nnn
I o . 4 0 0
10. * 0 0
3 Q . nfto
1 ? . ono
1 7 , 4 0 0
0
0
1* . 000
1 ft , p o n
1 7 . o n ri
40.000
l *. .a no
1f t . 9 0 0
4ft.OOO
4 7 . ft o 0
1a . n n a
45.4 00
49 * 0 00
5 7 . n0 0
55.400
5 3 * non
S04
rL
Mfi/I.
1q . r o o
1« , o o o
l q .ft.no
1 Q . ftO o
l o .fton
<51 , 0 0 0
01.200
7 0-4 0 0
7 fl . A 0 0
n
n
94.000
57.200
A7. H( 10
0 4 . 20 0
a?.?00
P 4 .? 0 0
1 4 f t . flno
o 3 . 'io n
o 3 .fto n
I o n . 100
i o n , 700
t
-F
f
MG/L
<l"tt« » ft# tt
*o /l
««««««»»
0
n
o
o
0
0
0
0
0
0
ft
0
0
0
ft
0
0
54 * 0 n n
4 5 . 5no
74.5*0
55 . fcof!
5 ? . fl o o
frp.fino
57.\00
5fl . o o n
ftp. ?o n
f-0 , * 0 0
0
o
o
o
0
• 510
• 048
• 3 7?
n
n
0
0
0
0
n
n
o
o
.190
.470
- 0 . 0?0
*
n f tc"
T F ‘ 1P
nr,-r
»mnnnnt«
1 /I 5/7"*
■?/ S / 7 1
3/ ^ /7 i
4/11 /7 ~ *
^7
» /7~ *
6 / (l/T*
7 / [J / 7 -5
R/ Q / 7 7
Q/ 1 ? / 7 3
14 , ? n r
1 7 . q np
2 7 . 7 0 ('
3 o . o n fi
7.poo
?9.nrr
0
ft. loo
1 ?/P0/7"<
1S.Snn
f l / 7 /i
P/ P1/ 74
7/ 6/74
7/?f! /74
4 / T/74
4 / 1 9 / 74
c;/ R / 7 4
ft/ 4 /7 4
A / 1P / 7 4
a . 3on
0.4(10
p. 1 0 0
jR.qnn
?7,?no
1/ i 6 / 7 4
° ,7nr
Jn,(|n|i
2 1 . ft" ■
'
? 5 . ^ n f'
1 n / 1 r>/7^
p/
D .n .
N«r./L
22.
2 1 . 5 nr,
? o . o n f;
1 ^ .n n n
p.cnf
2 4 , n n r
2 7 . 3 n r,
?3 . P m
? 4 . ft n ^
P 7 . 7 f' ^
? 7 . ft n r
p . n on
7.4 on
7 .'inn
Q . poo
p.snft
p.7no
p ♦ 1 on
7 . f-0 0
« . POO
p . wno
. ison
7 . 4 on
7.7nn
p . con
R . non
L^.KE
n.o.
OKEfCHON^F
PH
*S*T
« «■»-turn-*
Fi r i . n
# * # * « ■## *
<33.?ft«
97.P^5
1 1 n , n n f)
92.045
97.Kft1
Cl , 1 1 0
p . ? no
p. 5nn
96.1^4
n
R0. 7ft9
92.=93
\ n 4 . c 45
na.poq
cjfl , Oft4
H f l . n i ’i
« 1. 7 P0
1 n 5 . 7 7ft
115.P^4
7.407
P5.057
9 1 .ftft7
1 n 1 .?ftft
1 *1 1 .Pftft
- Pn
C f NO
ALK
mfo
/
«
l
3 .POO
FIFL D
3 . n0 o
? . 3 nn
3.P0n
3 . ?8n
3.120
7 . 06n
P.76n
P . R40
?,4fln
? .56n
P.POn
6 8 o . O'no
7 0 0 . nno
ft9 o . no o
n
0
650.000
7 1 n.nnn
64 n . o no
5 P C . o« o
59n.non
6 * p . non
6 3 n . nno
p . 1 no
2. 33r>
? . 670
6 ? o . non
6 ? n . [}nn
p . 3no
p . ofln
p . qnn
P . 500
P . °2n
P .*90
7. nnn
o . 4 on
« . 1 no
p . i on
7.nno
3.*30
?.«oo
P . 900
3.300
3.170
6 5 s .nno
6f tn. nno
SlP.ono
330.000
6 9 n . nno
725 .pno
7 5 0 . nno
755 .ono
f* . 0 0 0
P . 750
p.tnn
o.m c
fl,4no
« ,<;7n
fl. noo
a . 7 no
fl.^oo
fl. nno
f l . poo
seco i
i£.ono
15*000
45.000
14.000
16.000
0
50.000
66 . 000
46.000
61.000
*59.000
0
36.000
22.000
0
40.000
26.000
16.000
32.200
2 ? * 0 on
0
0
*
LAKF
OKFFrHOUf-'F
-
P11
*
*#*«»■»##*#«###«***«###*#***»#**#
I ft K F
P
ST
Tr
T T f' \
/■
Kjn-f
^ r’
/i.
#-9 « Ote<HV■
&
Q / £ t ? / 7 ’’
1 0 / 1 0/7*3
1 1 / 1 S /7*»
tvH3-K
vr,/L
a«» « a aa*
.
?os
. 1g A
- 0 . 0 0 4
. 0 1 7
, M 7
- r>, n,flP
- o .n op
- A . f| p 4
- 0 .n n4
,fiPQ
. 1° 7
1?/P0/71
1/16/74
? / * /7A
7/ p 1/ 7A
V
ft / 7 A
T/?f}/74
4/ 3/74
4 / 1 P/7A
. 0R3
. 0 1CJ
.
1
. 0 7 ?
.11*
<5 . 1 7 0
0
7.700
<3- 100
* o?o
,n?n
0
o. o i n
0 . r i0
*nnS
.n il
. no*
, 007
, 0 0?
. o 03
-n , O n 4
-n . no4
0.010
1 .S30
- 0 . 0 0 4
0.010
0.010
0 . 0 11)
. o?n
.0*0
o.oio
- n . r,n 4
-n.no?
- o . o o?
-a . nr)4
- n ,o n a
- n . o o ft
.nos
- 0 , 0 0 4
- r . n 04
-0. 004
. o n
=;/ 0 / 7 4
A/
.
- o
.0 0 4
S I O ?
M G /L
1,7?n
1 .S70
i . 42n
? . o?0
1 , ft o 0
1.710
1,7*0
I . !?0
l .n o
-n.oo?
- n . n 04
(k/lP/?i
T - P
MG/L
»####»#»
.117
. 1 " >?
n n
n R - P
Wft/L
***#«*»*
-0.004
4/74
Tkm
MP/|
»#e #***
fl? a
. Ifrf
.
wn/|
»#«#«»»»
-o.no?
1 / 15/7"!
?/ S / 7 ^
7/ S / 71
4/11/71
c; / « / 7 " f
f t / 4/7*3
7 / 9/7*’
p/ 4/71
<: m p F A r FT
* op*
- n , 0 0 4
.0 04
- r' . 0 0 4
, 0 7(1
o?n
•
.10 0
0.0 10
.012
. 0 40
. 1 ?<)
0 * P10
0 • fl i o
1 .AfiP
1 .SI 0
1.910
p . -340
? . 24 0
1 .<5ftO
1.790
? , 730
? .P*o
1.510
1.4^0
? , ?*0
■
■
-n , o o 2
. 0 os
- o . of )2
- 0 , oo?
.n il
.ooo
.002
—0 , n 0 2
-0,002
-0.002
- n . 0 02
-.0 11
» o ,0 0 2
.002
. o oS
—0 • o o 2
, o^s
,003
, 0R7
'
ft. SOO
.n o
,0?7
f t . <500
6.400
,04 3
2 . 020
.040
.043
.035
.0^0
, 0 S2
.09?
• 0^6
,0*2
, 0*5
.0**
, 0 fl4
,0?3
. 0*fl
.0?*
* ?90
.550
4 0 00
4.500
4.720
5.S80
S . <5*0
s •4?n
ft • o 2 o
A * A*0
5 * 1H0
f>. 1 4 0
5 . 150
fc.oflo
I
*
| Ah F
S T A T T " *>
D ,« T r
LAKE
OKFftHO»rF — p 11
^MDf-ATF
rv a
fl . A .
K
Mf./I.
CA
fl * A f
A*A •
Cl
*-r,/t.
.nny
ft f t . o n o
S 2 . Ono
49.^00
Sft.?O0
cj.cnn
S4 . c n o
4 6 . ft n n
46.70ft
19.7 00
4 6 . ft ft ft
4 8 . nnn
46 . ?r n
49.000
ii 2 . 4 T 0
4 5 * A ft ft
44.000
4 7 . ft 0 n
4 9 . on n
S6 .ftftfl
S 2 . C 0 ft
4 0.000
1 ft . 0 0 ft
1f t . o o o
l o , 00 0
1 fl . <=; n n
l o . f t ft ft
1 o . 7ft ft
19.70ft
I7 . q0n
4p . nno
1 4 , 1 ftft
1 ft, 7ft0
\ ft . ft ft ^
1ft . o n O
17 . 4 0 0
1 ft , <3ft ft
17. in n
1 ft , ftftO
19 . 500
1 fl . 4 0 0
2n , ?nft
1 9 . nnft
]c.?ftp
flS . ft 0 ft
ft ft . n 0 n
9 ? . non
Aft* 0 0 D
1no . nd0
ft 1 . ft ft 0
0 7 . SO 0
Q? . f t 7 f t
9 1 . son
7 4 . ft ft ft
ftl.non
R q . non
ft f i . f t Of t
ft 7 . 4 ft ft
fl 7 . 3 ft ft
«3.?0ft
ftft . 7 0 ft
11 f t . n o n .
q f t . 3 ft ft
1 ft 7 . ‘J 0 ft
9 7 , ft ft n
1 ft 0 . 3 0 ft
4(t!KlSiHt4
l/lS /7^
■?/ ^ / 7 1
7/ S/71
4/1 1 /71
c;/ H / 7 7
A/ 4/71
7/ « / 77
fl / <3/77
9/1?/71
1 fi/1 r / 7 7
1 1 / I c> / 7 1
1? /? n /7 7
1/ I ft/74
5 / ft/76
? / M /74
1 / ft / 7 4
7/?r/74
4/ 1/74
4/1 «/7/.
c. / M / 7 4
It/ 4 /7 4
A / 1 ft / 7 4
®
S 7 . S f* n
sii.n'ir.
5ft. 3 " '’
ft ' i . ? n n
c 7 . a n fi
ft 1 . 1 n r,
e 4 , <\fl o
ft 1 . f t nf '
S 3 . ooo
S 9 . n n 'i
S 4 . 0 ft 0
c ? . 7nn
cs . nnn
= ft , n ft r
5«,onn
i* fl . o o n
7 4 . o ft n
ft 4 . n n r
ft 4 « n n r
ft ‘i . ft n fi
fs.m r
4 . non
4 . 1 nn
4 . ? ft n
4.020
4 . ft ft n
4 . fl o ft
4 . 7nn
4 . n mn
A • 4 S ft
4 . nftft
4 . 1 ft n
4 . n0A
t- . 1 ft n
4 . ^ 0 ft
4.100
4 . o n ri
3.ftno
4 .ftnn
^ . Qnn
4 . ft ft 0
K . =. n f:
4 .Pnr
* 2
SC4
MG/I.
**■»o tut##
t -f e
*G/L
««««««#«
o
0
0
0
0
0
0
0
0
ft
ft
n
S n . fl n ft
1 1 . 3 ft 0
7 1 . 7 ft fi
f t f t . 4f t f t
4 ft . 3 a 0
6ft . 1.0ft
57 .ftftO
f t f t . 4f t O
ft4 . ft ft 0
7 ft . j ft ()
ft
0
ft
n
ft
n
ft
0
• 17ft
. ft 96
.3^1
ft
0
0
ft
ft
ft
0
ft
. ft 40
.430
. 0 90
»
1 .1k-F S T T T
n f TF
'*
L flKF
TFf'P
n .^ .
wn/i.
nr,-r
1 /I ^ /7"5
<=i/7^
1 / =/7'>
4/11/71
^/ H/7^
A/ 4/7^
7/ 5 / 7 ’
« / Q/7*1
Q / 1 ? /7">
-
Pit
«
nnTTC
n.o.
RM
<*sat
f I f i n
ALK
»##««»#*
-ft-O«• # •»•!>
7 /
CIKf F ^ H O ^ F F
m f o / l
#«.***#*#
CCMn
SECCHI
FlFin
ch
13
n .loo
P 9 , 4 ? 3
R . 2 0 (i
3 . 2 0 Cr
6 7 o . noo
0
1 ft. n o 0
1H . 00n
2 1 . 1 d"
?4.«nn
3 , 1 fin
Q 1 . Q 1Q
P . “* 0 0
3. non
6P 0•0 0 0
0
? . Qoo
660 . Ono
0
3 . 3 0 0
0
0
3 . 3 6 0
0
0
0
?7. 7nn
o
p . ? on
p . i no
7 . 1 nn
. ftn n
o
? H .A 0 P
? Q . n fl r,
2« .
P
n r,
.4f>0
7 • ?no
7
0
q
. n ri n
p . i s n
9 1 . U 1
56i4?9
P .
Q9 . P 7 3
P . 1 00
2 . PftO
6 6 0 .OOf)
7 0 . P P ft
p . ? n o
3 . O 8 0
7 1 0 . 0 0 0
0
« . 4P0
2 . 7 4 0
6 3 * . 0 0 0
0
? .P 4 0
5 0 ^ . 0 ^ 0
0
0
9 3 . * 7 1
40Q
0 . 0 00
«. T00
2 . 4 8 0
5 9 c , o n o
0
?
. 5 4 0
6P 0 . 0 o 0
0
6 R 0 . On 0
)n/in/71
2 7.?nr,
11/1^/73
1 1/ 1 ^/7 3
P . 4 0 0
9 3 . 1 3 3
P . 200
p.son
9 4 . 4 4 4
P . 2 0 0
0
1 1 / 1 /7 1
\ i / 1 =;/7?
2 1 . ? no
2 . ?oo
2 1 . ?np
21 . ^On
. ? oo
0
6 P 0 . OOO
n
0
6 P O . O P O
0
1?/?o /71
0
n
1/ I f t / 7 4
? / 6/7 4
P/P) /74
3 / ft / 7 4
^ / 7 ri/ 7 a
4 / T/74
4/1Q/74
=;/ P / 7 A
*, / 4 / 7 4
/ 1 *■
>/ 7 4
1
-inn
?n.nro
1 H.qn
r
1 P..7ru
2 1 . ?np
2 3 . ? n '-
? 4 . ^nf
?7.?flr,
2 7 . n n f;
P .5 0 0
Q 4 . 4 £* 4
. ^o o
1 0 1 . 1 3f t
p
p . 20 p
7 . Qon
7.^00
2o o
7.400
,4nr
7.500
7.^nr
ft, 7o n
* .^00
0
9 1 . 1 1 1
K 5 . « 7 0
p
a . ?nO
0
p . p n o
p . no
0
2 . 6 0 0
0
0
0
2 . ? 3 0
6 2 0 . 0 0 0
0
2 . 7 3 0
64<= . 0 0 0
0
6
7 R . 4 « ^
H. PSO
7 . ^ 2 0
9 H , q ? 5
P . 320
?.9 5 ft
«?.???
P , 4 n o
E* .
0 0 0
0
670 .0 0 0
0
? . 6 9 0
5 6 9 . 0 0 0
0
■
5 . T13
c. , f l o n
3.ft30
1 0 0 . 0 0 0
0
* 6 . 2 0 7
P . 400
? * P6 0
69 0 . 0 0 0
0
P
p
P . 9 5 0
9 . ? k ft
P2.71ft
. ino
o . 30o
7 . ft 0 0
3.330
3.200
72P.00 0
76 ? . oo n
756 . 0 0 0
0
0
0
#■
!>
■
»ir fttt
*
| Akf
n
i>
qTATTTN
*
t
r
«■ #
»
»
k
t
i -
f
#
1
^
/
?
/
5
/
T
/
< ^ / 7
4
1
/
/
l
*
1
#
7
/
7
.
-*
1
.
T
-
1
y
n
1
1
?
fl
n
<*
c
/
H
/
7
-5
,
M
A
/
4
/
7
^
.
r - 7
/
rV
7
3
•
n
/
P
/
7
- !
-
- i .
n
/
?
/
7
^
- ■ I
r
/
/
7
i
i
n
I
-
3
1
/
>=i/
7
1
1
1
/
l
t i /
7
3
1
1
/
I
S
/
7
1
1
1
/
T
R
/
7
T
1
p
/
7
/
7
T
1
/
?
/
1
P
/
^
/
7
f t /
7
P
T
/
3
/
4
/
4
/
1
?
.
o
n
*
.
n
f l 4 f i »
/ t
4
*
o
?
. nfto
1 .7 7 0
. noft
.
?
. o ? o
? .
. no'’
. 1
r ' ,
o
o
4
. m
n
.
n
o
?
. ! >■>' ]
1.
? . 7 ci o
-
n
.
n
o
?
.0 4 0
. non
i = j
. 030
.
r,
n
.
n
o
-
n
.
n
n
P
ft
.
n
o
7
n
.
0
0
4
-
n
,
0
0
4
- n .
n
0
0
-
n
.
n
r s 4
0
-0
01 0
1 .^10
? . ftBO
- n . ni
.
n
fl
1
o
4
4
.
1
*
4
.
1
~ * P
7
7
P
/
7
4
/.
^
-
a
-
'
»
.
.
?
.
f i ° l
.
n
n
4
.
p
r
4 .
-
n
-
0
.
.
n
0 4
o
0
.
-
r
0
,
o
0
n
0
-
4
o
0
4
4
4o
0.010
- O . o i o
.n
13
?.
?.
0
n
, n o 9
- ft. n o
2
. 0 0 7
.0 3 5
n
4 . Ron
.0 3 5
4 . 3 5 0
. 0 * 7
«i * * 3 0
.
1*0
ft* o ? n
. o«n
*>. «10
«0
730
. no«
. 0 7 4
7
. 0 0 5
.
0Q ?
5 . ? 3 n
.'0 ?
.031
ft , ? f l O
. o o?
.
? . c
• n
4
4 . 0 0 0
00?
.0 05
.
.
?0
. 0 3 5
,0 0 7
? . 7 1
n?n
. o i l
P . 4? n
. n ? o
P
. 9 1 0
1 . 4 1 0
n ' i.)
7
.ft3«
0
0
.
r
? n
n
—0 -
0
7. onn
2 .1
n
1 1 ( 1 4
4
0 f,
. 9 o n
fl
0
0 4
fl . ft
6
n
.
0
8 . 7 0 0
0
,
n
10}
.110
. 1?0
.012
. 0 7 (1
0
0
0
0
9 . 1 0 0
n
A
„
R n
.0 4 ?
.
'
.9
- n . n o ?
. 7ft0
-
,
"02
9
PH
. 4 ? o
1.52 0
■
o
2
1
M G /L
##»##**■»
. (ISA
.
4
o
o
, o o ?
1 .4ft0
7
-
/
- n
°
-
/
- n .
. 3SO
4
7
. n o ?
1 . 3 9 0
n
4
.0 09
002
.
1
n
p
H
. n ?3
- n . n o?
n
.
f t f t
4
M
.
1
7
1.
n
n
o
/
o i n
0
,
7
. n ? i.i
o
.
/
- n . n l o
- n . o i o
-
4
/.
9
0
-
4
/
190
-
-
MG/I.
#*■»*## «»
UR /L
■it- »«■ » «■<»'» <»
n
* *
5
« tt # tt tt 4
S I O ?
n
o
1
MG / I
T - P
n
7
^
1
p
M(j/t
H H H » « tt w
n p - p
.
7
^
/
j i H
n
.
fl «■»><>fl <!■<Ht © IHSffO » ^ 4* o -if <■
■# *
«
.
n
u
o
«
/
= ; /
A
n
]
L
f t /
3
/
.
, n
1
0
fi
-
™
.
7
/
< h j - «■ #
? n f t
.
R
r
«
TKM
iH3-N'
K ‘ C ? - , f V
'
) # ( : •
1
7
1
* # * # # <
r'k'FErHOMFF-Pu
MnT T O '
* r , / L
e
L^kp
4
0
- n .
0
l . 4 ? n
? . ?4 n
- n
1 . 4 f* 0
- n . n o ?
.
0°ft
nftE
. 0 ? 4
ft. c a n
« .
10n
5 . 4 9 0
ft . ? ? n
A23
*
L ft K F
C T ft T T 0 1\
P *T r
a
A
A. A.
= 7 . t or
t ? .70 r
ca . nn
' =7.50 0
A0. 40n
5 7 . TOO
C
C
•
fl/ 9 / 7 1
9/1?/7l
1n / i 0 / 7^
11/15/71
11/ t « i / ^
11/15/71
1 1/ 1 ^ / 7 1
1P / ? 0 / 7 l
1/ 1 6 / 7 4
?/ A/74
? / ? 1 / 74
<=9, 000
61.100
53.000
5 7 . 0*0
0
n
c 4.
c 1.
CS .
= fi .
nK' fTE' CHOH^F
-
pll
*
MOTTO
ttfr* y># <!- # « ■
1/I 5 / 7 l
?/ 5/71
1/ 5 / 7 1
4/ J t /7T
5 / M/ 71
A/. 4 / 7 1
7/ 9 / 7 1
L4KF
n
r oo
7 n r,
M ('
ono
T / A/74
T/?n/74
4/ T / 74
4 / 1 u /74
c / H / 7A
c 4 . fi fl /1
C 1.opr
K? .o n p
A 0 , 0 P fi
4 9 . -i n n
A/ 4/74
A/1H/74
66 . oon
51. 0« 0
■
tt
k
Mr-/L
C6
#
4.^00
4. nnn
4 .? 0 P
4 . 050
4 . 0 4 0
4,140
4 . 7 4 0
4.
050
4 . 4 1 0
4
.000
4 . 1 0 0
0
r\
0
4 . 1 0 0
1 . Po o
4 . 4 0 0
4 . 1 0 0
4 . 0 0 0
?.7ft0
3 . 7 0 0
4 . 7 0 0
ft . A .
* » # iHV *
Sfr,
V-*
5 1. o n o
A 0 •0 0 0
5 2 . no n
<=3.100
0
49.4 0 0
5 4 . 4 00
4 9 . =;0 0
4 3 . 7^0
?9,?r> o
4*5. 7 0 0
0
n
0
4ft,00 0
4 8 . ?no
49. PMl
4 1 •A n 0
45.401)
4] . 0 0 0
4 6 . p O0
5 0.000
A .o o o
5 . 4 0 0
?.
r
5 2 . opt)
52 • ? 0 n
A. A.
«■■»« » «■■
»
10.000
j p . o r-n
1^.000
1 « . 1 00
2 p .? 0 0
.o00
2P .000
1Q . M O
37.20 0
14.500
lfl.POO
0
0
0
17.000
l^.QOO
17.00!)
l a . io n
17.400
lA.nOO
1A .A 0 0
I P.400
20.700
1s .A 0 0
19 . 4 0 0
rL
rr,/t
o n , ooo
fl7 • ^ 0 0
90.000
flH . 0 0 0
1 oi.oo o
fl7 . 0 0 0
101.500
9?.?20
93.900
75.*00
fl?.MOO
0
0
0
f»4.0 0 0
« A .600
fl4 . .10 0
flfl * 3 0 0
RA.POO
fl5.2 0 0
105.100
9 0.200
flA . 4 0 0
1 0 0. 3 0 0
1 m .700
sr4
t
-f f
MG/L
#«#*»«*■»
WG/L
n
n
n
0
0
0
0
0
0
0
ft
0
0
0
0
47.300
41.500
■7 4 • ? o 0
' 60.700
4 0 . lon
6 3 . flPO
5 P .0 00
6 0 . 4 no
6 7.7no
69.900
0
0
0
0
a
n
0
0
.500
.047
• 494
0
0
n
n
n
0
0
0
0
0
0
.870
.3*0
- 0.020
*>
I 4« f ^ t a t t r n
n f tf
',
TFM P
CG-r
n.n.
P.O.
K‘C / L
P.-S a T
1 4 .in.*:
fr/71
i 7 . mi a
O . f t n ft
T /
6 / 7 ?
Z 3 . n ^ '
«, ] n n
2
n . Q nn
? S . 70 0
7 . 0 0 ft
1 . * n ft
! n . 1
3 8 . ('0 0
q i . i " 3
3 , n n n
2.60ft
6 4 ft . 0 ft 0
6 4 . ft ftft
1. 0 1 . 1 ~>6
ft . fl f l u
P.7ftft
0
P 0 . ft n ft
9 5 . 1 P^
p . 4ft0
3 . 1 6ft
n
9 0 . 0 ft ft
? w . ? o n
7 . f, n 0
P8.ftnH
' 2 9 . o n ft
7 . 5 0 0
q 6 .
'■| / l 7 / 7 4
? /1
~ ? . n ft o
9
7 / 7 4
=;/
0 / 7 4
4 / 7 4
6 / l p / 7 4
?
0 r'
q . ^ n r.
6 4 f t . ftftO
1 4 4 . ft ft ft
a
fl . * ft 0
p .'io n
5 9 o . ft ft 0
I P O . n o n
= . o o n
? . «5ft
7 0 f t . ft o o
9 7 . f) ft ft
n
1 . 7 2 0
3 ? 0 . Of t 0
7 6 . nf t f t
P.5ftft
1 ,81ft
4 P ft . 0 ft fl
9 1 . 0 0 0
n
° P . 7 ? 4
lO h . fllfl
p . * r,
. p o o
p . ^ o n
. ? ii ii
p , fl o n
?.45ft
4 1 0 , 0 ft 0
7 n . ftftft
1 r . ? n p
1 0 5 . 1 r- 5
P .c
7 5 . n ft ft
n . 7 n o
q ft , a ft 7
fi.unn
1 0 f ! , f ' ,' 0
Q 5 . P ? R
P * 1 0 0
p .
? q . ?
f l l . ftftft
. non
P4."5 14
P.lflf)
ft /
6 9 0 . ft ft 0
t
,4ft0
1 ( '4 .^ 4 5
« . ft n n
m . s " ' '
? . 7ftn
P
* o n
/ 7 4
i / 1 « / 7 4
p .sn o -
4
54 0. non
4 / 7 4
V ? f
4 /
9.40ft
fl.
P 0 . - ft 0
1c
1 15 . c «4
1 5 . n ft rs
3 /74
P / P 1 / 7 4
3 /
.5 n o
ft ft ft
3 0 .
6 5 ft . 0 n ')
« / 7 I
?1
'CM
«# « « # « # «
*#«#»<)*#
6 4 0 , Of i f )
S/7-)
7 . R o n
SFCCMI
CCNP
fiflp
1 . ■'I 0 ft
7 /
f H . n n r
l
?.»[)”
A /
.1 ( i . n n r,
/
« . p o n
1
n
mfo
fl . : >P 0
« / 7 ^
1 1 / 1 4 / 7 1
*
I S
4 / i
l n / i r / 7 1
11
1 -11 . 0 ^ 3
^ /
?<5.nnn
i Fi_n
■
ft«■#.fl-ft<H>«■
0 7 , 5
1 / I * / ’ I
q / 1? / 7 3
-
|K
DM
f
tt«.
? /
0^1 ^ /7"5
OkFFCmo^FF
smpfatf
*<(■
n i
L^kE
1n
rs
7 . * 0 0
7
. 9 n n
r
ft o
P . P O O
64-i.OftO
P .4 5 0
P . 740
6 5 ^ .OftO
ft
F
. S 5 ft
P . o e n
4ft« .(inn
5 6 . ftftft
ft . 4 ft 0
? . p 70
J? P ft . ftftft
* ? » 0 0 o
P . 6 0 0
1 . 7 3 0
6 0 0 . ftftO
5 ft * n o
Q . * n o
? . 9 2 ft
7 f t c . Of t O
7 9 , n n n
7 * . ft 0 0
ft
Qft.4P9
n . 4^c
P.97ft
7 3 f t . 0 ftO
9 7 . 4 *1 *
fl . ft 0 0
3 . ? » o
7?c.ftftO
fl
1 n p , CO 7
7 . q o o
P.31ft
67n.flft9
0
A25
»L
rv
K"“
./I
it« a «■■int■
»w
«-«■■»«•int-i*«■ ■
DfTC
- n . o fi p
1/ l * / 7 ’
?/ A / 7 1
1/
A/I
^/
m/
ft/7^
1/73
«/73
c; / 7 T
7? 9/7"*
P / 1 n/7T
0 /1 ?/71
] 0 / 1 0 /77
11/ I 6/73
1? /? 0 /7 ^
1/ I 7 / 7 4
?/11/74
? / ? 1 /7 4
T/ 7/74
i/? n /7 4
4/ 4/74
4/1 9 /7 4
d/ y/74
A/ 4/74
f t/ 1 H/74
f»o p - iv
vn/l
*■
!>■» tt« » »
•c m
. CtA 7
- o . r oa
. o=; n
- o . ('"fl
- r . ri« H
.ri,n"R
. -I M
- 0 . 0"A
- ll. 0 " 4
. 1 7?
- o . nob
- u . 004
• n->5
- n . r>o a
. r.0
. c
. 1 ? r<
- f> . 0 fl 4
.on
- fr, n o 4
- o. on?
- o . n o4
- o . on?
-o.on?
- o . 004
- n . nna
- o . n (IB
- fi • 0 04
-0.004
- n . 00*
- n . 004
- n . 0fj4
a KF
DKE’FCHOPf-’F - p 1 1
MH3 -N
Tkw
T-P
#***■»**•»
1 . *50
* o ft 0
.010
. 0 1H
1. 4? 0
1 . pflo
.P90
1.700
1, ?«0
1. = 10
1. 420
1,450
1 .*90
1.*30
. m o
.
.
09 0
0?H
0
- o . m
o
. ni f )
-0.010
-0.010
. o ? o
-0.004
-0.004
-r . noi
- 0 . 0
-0.0]0
.114
1-1 s c
1.170
1.000
. o i rt
- n , m
SIC?
MG/l. M G / L M G / L f ' G / L
-n . no4
-0.004
-0.004
- r . n04
- r. . 0 0 4
np-p
MG/1.
1.750
1.4?0
1.040
1.440
1.0*0
1.4?°
P.47 0
? . 17 o
- n .no 4
*
o
- O . n i O
- o . o i n
. n?n
.n o
• n o
.
* oo2
• noi
-0 . n o ?
• 002
-0 * o o 2
• 002
,o74
a.ofio
.040
.035
. m ft
o
4.300
2.700
. m fl
fl.?oo
.040
5.900
-0 . 0 0 2
-0 . 0 0 2
- o . o o2
-0 . 0 0 2
• no2
• 004
-o . no?
• 002
-0 . 0 0 2
- 0 , 002
- n . o o2
-o. 002
-0 . 0 0 2
.OK!
, 0^2
.m l
.042
5.000
9, ?f t O
5»
o
4.790
*n?R
2*530
. n c!4
.0?1
.033
.0?6
. O r'H
. QT o
.074
. 0?2
4 . ft00
4.200
5.310
5.710
4.030
5.490
4.ft50
3. *4 0
0()2
—0 . o o2
-0 . 002
.mfl
. n? 3
# 0o5
h» 1 *3 0
* . ofio
2 . <*10
- o .
*
t A^F S T A T T ^ K
n
a.
A
K
f-i ^ / 1.
ft .
CA
Itffi
ft . A .
A. A.
« #<H} «<H* ■
»
J<-
1/1 ft / 71
2 /
ft/71
1/ f t / 7 1
4 / 1 1/ 7 T
q/ »/7t
A/ ^ 7 1
7/ 9/71
fl / l fl / 7 1
Q/ 1? / 7 1
] n / ’ o / 7 l
U /i^/7";
1 ? / ? " / 71
1/17/74
1/74
? / i l /74
1/ 7 / ^ A
1/ p n / 7 a
4/ 4 / 7 4
4 / 1<J / 7 4
q /
'J / 7 A
f / 4/74
f / l B / 7(i
? / ’
5 7 , <■
!^ n
fl
*X
\J
<t
0 K F F C H n w F' F
-
Pli
*
ipF A f F
n
a tf
L' l KFJ
cl .■
'o n
57 . I P r(
f ? . 4 PP
* 1 . 1 o :)
5H . ? " n
4 7 . fl ft 0
f' 1 . 3 0 n
3 ft . o o n
3 o , n r> o
5 1• o0o
c l . 1 nn
5ft . OP 0
4 4 • 'i r* n
5 4 * ('n o
tv p . !\nn
K 5 . f. P
ft 1 . o p p
f. n . r fi 'i
A
ft 3 . n
r
57 . npo
4 .inn
4,1 nn
4 . TO 0
4 . 15 P
4 . ?f t p
4 . ft 3 P
4 . IP n
4*^00
? .
pa n
i . pip
4 . 00P
*,ioi
4 .4 o r
1 .1 (1 0
4 . npp
l.^nn
4 ^ on
4 . ft 0 p
on
1n n
/.. »
c .
4 . 1P p
s 0 . o nP
5 H , p -i0
4 9. P fl P
4 5 . ftno
56. m o
S O . POP
44 . e P0
17. ? P 0
45. 1 00
?4 . C O O '
1 1 . a t0
4 5 . P o il
5 3 * n n ;l
4 ft . ? P 0
>\2 . 4 n ri
4 5 * ri o ii
.p n 0
4 7 .ftpP
5 n .n n o
^ 5 • fto P
^H.ppo
1 ft, Itn n
CL
MG/L
«■#*»#««*
2n.0P0
1p . t np
in. 1 PO
3 P , ftp o
p .ftpo
n.ooo
1 c . non
nA.^on
p*.ppo
Sfc.POP
« q .h o p
1 n 4 . oPp
o 7. oop
q 1 . 1p n
0 1 , «on
91.300
5?.?00
* ; * . i oo
R 1 . 0o0
I 7 . 7 fl o
O7,ftp0
1 P ,0 p 0
1 o , fl0 P
! 7 . ono
1P . 4 P 0
? r ,i n n
r.Aiin
1 ft . ? P 0
\ 7 .100
17.000
17.0PO
I o . A,n 0
1 o . *.n n
IP.ann
1 a .?P 0
SC4
MG/ i
U‘« # 4
t -f f
^G/L
«*«##«««
p
n
0
0
0
n
n
0
. (17 P
. 1 03
.16?
P
('
11
P
0
fl
fl
0
fl
fl
0
0
0
P
44.100
0
01.300
n \ ,7no
0 5 . 00 0
87.700
p 9 .i o n
45.500
0
44.1^0
0
5? .400
5 P . PPO
*5 . 4 0 0
0
p
p
01.900
6? . 3 0 0
ft 1 . 0 n o
B 7 . 20 a
QA.^Oil
0 7 , ft 0 fl
ft 4 . ? o n
6ft.Pop
0
-
. pp 0
. ?8 0
0 . 0 2. 0
A27
<
»
4k-F t;T AT TflK
n ■
■t r
r»,n.
«SAT
n .n.
i;r,-r
M C-/ t
###*##»#
fltnnurn#*
}3 . 30n
1 7 . r. n o
0
°.5no
. non
7.7nn
21 . o n n
? ci . 7f' o
2h . nnn
q
2 fl. H on
7.^00
6 .'’on
« . 2 o f*
n
o.nod
2 1 .non
*.?oo
21 . 1 no
2 1 .^ 0
q.ion
2 7,Afl'f
7 . POO
*3 . q n o
1^ .nnn
?.? . 0 n 0
1 ft . 6*0
?i.lon
Q.^nn
o.7nn
,J>. ^ n o
a . ?oo
? 2 , 2' 1 0
a . iRd
n . 7o o
21 .4 n ')
2^.500
23.snn
2 4 .^ ^
?q,nnn
2 9 .i^i
A28
* -tt-iHHHHHHHI- O *# * * * * *
O K F E r h O » r F - Pli
*
Mn T T C V
7 p Mw
P
■IHHHHJ HU* * «•
LftKf
p . non
p . 1 nn
7.Hnn
7.^00
»,?n(i
0
97.CTH
93.1#?
1 0 0 . on o
93.9^2
H I m142
9 7 . 41fi
0
I'll . 2 ^ 6
91.119
96.*67
in 3 .n i
1 «7 . Q 5 5
93.117
9rt.fl64
1 r.2. f!*2
fl9. 1 10
0 4 . PH6
9 6 . A6 7
9 7 • *^6 1
95•294
9 2 .^ 7
1 n o . fir ii
1 0 5 . 1 ?H
PH
FlF.un
o . 7 oa
P . in o
p. l. on
P. 700
P. 45 0
fl. 6 0 0
p . ?on
n.q40
4 . «no
f> . 4 0 0
P . 400
fl • 4 5 0
n.^OO
fl. POO
P . 700
P . 600
P . 450
P. 4 70
P .700
p . *, 00
p . a on
p. f tnn
fi, a o o
7.900
ttLK
ccno
MFO/L
f ifld
SECChI
CN 1
*««««*«#
3 . noo
? . H0 0
2.600
2.700
3.080
2.760
3.040
7.000
7.940
1 .68 0
1.780
0
0
2.500
7.^00
2.«20
2.760
7.08 0
7,970
3.*90
7.970
2,970
3.270
2
.3 1 n
.
6 4 0 . 0 ft0
6 4 0 . Ono
6 1 n , 0 00
n
0
69n.Ono
6 3 ^ . onn
6 nn. oou
7 1 5 . Oftfl
34 = . Ono
4f?n.ono
4 « o . ono
4fi o . 0 o n
6 0 0 . ono
470.000
64P,OOO
6 5 c . onn
49e,ono
0
600.000
71 0 . 0 * 0
7 3 1 .Ono
73n.0O0
67<r . 0 0 0
0
0
0
0
0
0
n0
0
n
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*
| 'w F C T A T T O K
r> a T r
-
!'C1->.<
*n/[
&<:-
G/ i
M
T-P
MG/I.
n «-p
iv iv l
» «■ «••»
S T 0?
*'<'»/ L
##««#»#»
5 . Q 0 0
n n?
. A4n
1 .*5*1
- n . 002
. p ?o
1 , 4 S n
. a 1 0
. n 4 8
0
- 'i. o n 4
. m l
1. . ? 9 0
. On ?
. olft
4 . 2 o n
- 0 , n o 4
- n . On?
. m o
, 0 1 7
2 . * 0 0
-fl . o p ?
. n ? 0
1 . ? ™
I ,A(in
. P O S
, '-!c 1
.0 0 2
. 0 3 ?
fl. 1 0 0
- n . o p 4
. '110
1 . 5 4 0
. 005
. n^n
S . 400
- p . 0 0 H
- n . o i o
1 . TOO
- 0 . 0 0 2
. 0?2
=1.000
— 0*1110
1 . 4 H 0
— o . n n 2
.0 1 4
. n 04
. fl 1 0
i .7 0 0
- n . o o 2
. 0 1
- n . i n 4
- n . 004
— 0 * fl 1 o
1 . 4 * 0
- 0 . 0
0?
.0 4 2
2 •*9 0
ri . 0 0 4
- n . nfl4
- 0 * P. 1 0
1 . * 4 0
. 0 0 2
. fl?5
2 . 5 5 0
- « .
A / 7 1
. n fl 7
1 /
ft /? ?
,
4/1
c, /
1 /71
u / 7 1
*,/
5 / 7 1
- n . nr>p
7 /
9/7">
- 0 . o n -)
- n . ri o p
?/7*a
- o * 0 o H
. r>e; 7
- n
] n/111/71
1 1 / 1 4 / 7 1
O / i
«
. n o *
1 / U ' / 71
/ 7 1
TKM
N H 3-K
u n /{_
? /
1«
O K F F r n D N K F - ►Ml
noTTfv
iUSO K iH t i> (>
f i /
LKE
.0 7 7
fl
9. IS O
5 . 1 2 0
1 1 / 1 4 /7 1
n
p
0
0
0
0
0
1 1 /I 4 / 7 1
1
o
0
n
0
0
0
1 / I
4 . 4 0 0
/7 1
. 1 * 0
- n . n 0 4
- 0 . P 10
1 . 1 1 0
— o • o o 2
. n *4
7 / 7 4
- 0 . 0 0 4
- p. . n o 4
- 0 . <11 0
1 . a 3 0
- 0 . 0 0 2
. m *
4 . 1 5 0
- -'1 . 0 ( 14
- o . fi n 4
- o . n 1 n
P . 1 7 0
- 0 . 0 0 2
. 0 ? ^
5 . 1 9 0
5 . 6 9 0
1? / 3 p
7 / 1 1 / 7 4
- n . p i n
1 . * 1 0
- o . o n ?
. 0=,?
-
r* ,
- o . o n 4
7 / 7 4
lf'4
- n . A 0 4
• n ? n
1 . 7 2 0
- 0 . O 0 2
,0 5 1
* . 4 1 0
7 / ? n /74
-
fi , n 0 4
. n 1 q
. n ?o
i , 7 ? a
- o . f'n?
.
0?h
b * 200
? / ? 1 / 7 4
1 /
/,. /
4 / 1
e,/
A /
4 / 7 4
/ 7 4
9 / 7 4
4 / 7 4
A / 1 fl / 7 4
. m o
. V< 1
- n . o n 4
. P7 0
1 ,P7fl
- 0 . 0 0 2
. 0?4
* .8 9 0
. ? 4 *
- fi. n 04
. P?0
1 . a 7 0
- o . P 0 2
. 0 1 7
4 . 1 0 0
. 0 1 4
- 0 . 0 0 4
. n^S
- f' . 0 rt 4
- ( l . o i n
r
- n , 004
.
?o
- r' . n f ) 4
. fi 7 5
i .
1no
1. . 0 ft fl
1 . 4 6 0
. 0 0 2
. 01
P
5 . «40
- 0 , 0 0 2
. o ? «
* . ? 8 0
- 0 . n o 2
.0 0 7
2 . 190
,ro
3^
VO
LA*F
O K F E C H O P p r - ^li
*
###*»«»**♦*»♦♦#«#*«**###**#*#**#
t
^TftTTHN
0
'
t
wnTTCw
Ni A
Tr
fl . A ,
■fr##<HH» «
ti
#
m «/L
# -o# w * & *
1P.OO O
1 7
1n
?4 n
5 6 . 1 * 0
2 n . 5 p n
43 0
4 8 . 4 0 0
2 0 , 1 0 0
Q R . n o o
4 5 . ?
c H. 4 " 0
c 1.onn
?t>o
inn
4/11'71
5 « . 7n n
1 <so
5/
ft? .
7/
9/71
n/ir/-’ i
Q/ 1? /? 1
5
fl .
4
7.
nnn
A
0
63.?no
4 , ion
140
050
4.590
49
. c n r|
1
f».
nno
. 0n0
, ft 0 0
0
95
5 0 . 1 0 0
0
.1 0 1
1.110
1 4 , On O
11
S f l. 0 0 0
n
•
P
. 9no
-
"0
0
0
0
00
0
1ft.ono
fl
4 9 , 4 no
l ft.
A 7
? / l 1 /7A
.400
4 B *
? /? ! / 7 4
5
.?o o
.
4 1
n
ft n 0
0
0
4 7 . 0 00
?n
, ?
0
, °00
.inn
0.
n
2 8 S
0
n
0
0
1 7 . 4 00
fl 1
. ft 0
«3 0
1 ft . « 0 0
ai
, 7 o o
4 4 . 1 ^ 0
fl?.?0<i
5 5 . 9 n n
0
0
0
4 00
ft 0 0
39.100
0
0
0
4 5 . 1 n
■
0
.0(10
4 8 . ?nn-
1 7 .
4 H . 0 0 0
1 7 . noo
Afl . 5 0 0
ft?. 5 no
5 5 . ono
.ion
.?nn
4 f t . fl n fi
1 7 . ? n o
q n . n o n
fi 4 . ft 0 0
0
ft 1 . n n n
,fto n
49
.
1 « . 0 0 <1
9 1 . ft o n
f t ? . ft A 0
0
C 7 . 1 M
. ft o 0
5 7
. Pn0
.Ton
.?on
53.
4/74
6ft* 10 0
A / 1 >} / 7 4
ft ? . n n a
^/
. 070
1 0 . 7 0 0
,n0n
S 1 .4n n
FIS• o n o
4/ 4/74
i/1n/74
■ c; /
Q / 7 A
0
0
44.
0
5 ?. nn0
5<i . n n fi
0
n
? 9 . o o »
n
7/74
0
4 fl.? 0 0
1
1/
00
0
?. Ron
11/I 4/71
1 ]/}4 / 7 1
V ? f)/7 4
0
'1
Qft.750
00
0
0
0
9 ? .5 0 0
0 ‘
1. n0 0
MG/L
« « « # <»» # <*
1 9 . ■? n 0
0
1/I 7/74
MG/L
*###»###
1n . 4 0 0
10
n
5 0
T- f f
1 4 . C O 0
1n / 1 0/71
11/14/71
?/?»/71
SC 4
0
0
0
0
1 5 . nno
* n . r, n (i
1
Mf./I.
.000
Aft.noo
6/71
ft/7 ?
ft/
A. A.
»**»#**»
5 9 . nnfl
7/
9 nn
/* . fl .
CL
u9
5 7 . /no
H/71
3/71
wr.
PR. 000
flft.n00
fl 7 . n fl 0
fl9 . n o o
1 0 1 . 0 0 0
1 / 1 ft / 7 1
1/
CA
0n
n
ft n n
3ft . a n ft
2n.5f)f|
1 ^ . 0 0 0
1
i ,
? o o
« 7 .400
. ft 0 0
qo , ? 0 n
Q7
fi? .ftoo
6
7
bl
. 40n
. 1 00
.]40
. ?'5 0
-0 .020
#
nnnnntt
LAKF
HKF FCH O h F F - ^11
*
i f t *■F S T A T T O N
fl
* «»
Tr
J:- ti- -it » #
TF"rJ
n . n .
n . o .
n n - r
Vfi/I.
»~SAT
■if
# »
1 /I
* / 7 “>
1' + . 1 ft ' ’
? /
6 / 7 7
1
3 /
i/i">
?y_ . n n r
? 1 .non
2 7 . o ft o
4 > 1 ? / 7 1
h ,q
o r>
=; /
R / r )
* /
5/7-J
, S'' o
- 7 / 1 ft / 7 3
2 9 , 4 n n
n / 1 n /7 T
q/T ? / 7 T
2 ^ . 5 " T
1 n / l n / 7 l
1 1 / I
4 / 7 7
1? / p o / 7 3
1/1 7 /7/t
p/1
1 / 7 4
/T/,
1 /
7 / 7 4
T / 7 0 / 7 4
(x/
4 / 7 *
A / 1 Q / 7 4
- /
(t, /
?1
.Snfi
A/1 P / 7 4
o i> * » <t ■» «
* # « # * * * ■ »
CC-MH
ftL*
M F Q / L
s
€ c c h r
F T El . 0
* # «• ■i h m * •«•-a-
9 5 . 1^2
p.iflit
3 . ft 0 0
5 9 5 .QftO
30
r> , ^ 0 0
1 n S , 776
fl , 2 0 0
? . « 0 0
7 f t 0 . Of t a
4 5 . 0 0 0
o , s o n
1 1 ? . c; n o
«. 6 no
0
11
5 0 * 0 0 0
9 7 . 7 2 7
R , 4 0 ft
3.10ft
n
o, non
9 3 . 7 ^ 5
n . n n o
3 . 2 H 0
o
2 6 . 00ft
o
7
9 4 . Pft5
P . 40 0
3 . ft P 0
6 0 S .QftO
2 6. n o o
7 . ^ 0 0
2 . n 00
6 3 0 . Of t O
9 2 . 0 0 0
p
.4 3 0
2 . 7 8 0
6 4 0 . 0 0 0
8 6 . 0 0 0
7
. 600
5 5 * 0 fl 0
o . an n
p .
f' n
n
. t o o
6. 9no
D
v . q o fi
H fl.4 ^ 2
0
v !
. nno
? . 79ft
6 7 0 . 0 0 0
6 . P 0 ft
* 7 . 1 7 9
p , ? o u
? .
Sfi^.O PO
7 4 . 000
P ,*Oft
P7 . 7 ?
« . l ft ft
2 .4 2 0
6 H n .ftftO
33 . 0 0 0
1o 2 . c
7
72ft
l ^ . ^ n
s . 9 n n
P . ? ft 0
2 . 7 0 0
5 7 c . Of t 0
0
2 2 . 6 n ft
h
. ?n n
a 4 , ? S 3
P
? , 3 7 o
5 9 c . Of t O
* ) b . ft 0 0
1 8 . H P .1
^ . i on
9 5 . 7 ^ 4
P . n o n
P . 7 3 o
5 4 c . o^n
3 ? . OOf t
1 Q.flnn
7
P 4 . 7 3
. 15 n
■?. 6 f l < i
54=i . o^ft
8 , 05n
2 . A 1 0
4 9 7 . 0 0 0
* 2 . 0 0 0
3 S . n o o
?_}
i)
• fl 0 ft
3
p
.
4 ft o
0
9 . ^ po
1 r 8 . “ ^4
. 3fin
a . 4 n ft
1 ftft.PT H
a . 4 ft o
? . P 2 ft
6 9 0 * ft ft 0
. 7ftr
7 , 7 rt n
9 3 . ^ 1 2
p , -sftO
3.66ft
6 P 0 » 0 0 ft
1 6 . 0 0 0
2 1 . 7 n
2 7 . ? o a
r- > / 7 4 .
H /7 a
a
P H
F i n . n
< ;J .
r.
. Tfto
7.40ft
P 5 . r ^ 7
p
fi.^nn
^2 . 1 4 3
^ . n O P
Q . ^ o o
1 1 4 . 2 ^ 6
a . 70ft
1 " =4 . 7 S 9
. ?ftO
7 . 7 ft ft
P . ^ 7 ft
6 9 0 . 0 ^ 0
2 2 . 2 0 0
2.91ft
7 3 ? , n ft ft
4 2 . 0 0 0
3 . 3 0 0
7-t n , o n u
0
3.
7 ? a . ft n n
0
n o
«
( ii-'f s T &
0 Tr
l/lfi/71
?/ 6/71
1/ 7/71
4 /1 ?/7?
q / S/71
A/ S/71
7 / 1 n/71
h/ i n / 7 1
Q*M?/71
1 0 / 1 fl /?->
n / i 4/ 71
1? / ? 0 / 7 1
1/ 1 7/74
?/11/74
? / ? 1 /74
1/ 7/74
3/?ft/74
4/ 4/74
4/19/74
S/ a / 7 4
A/ 4/74
f,/l R/74
T
TnK
NCl-ri
/(
#»##■# iH> •>
,n99
.?lli
. 0^4
- n . n f*4
. f! 7 S
.no S
- n * 0 n fl
.019
- o . nn4
. fi*1 ?
. 1 76
.\
. 1c ?
.21 ?
. 1 Q*S
. 1 OS
. 1 -*2
•1°4
. 1 n .1
,ora
- o , o fl4
idf
L,*.K F
• O K F H r M O t,rF - tM 1
«
^ rp
NO
'
Mr / L
-o .00?
.0( 15
-0.004
- n . 00?
- n . fi o?
—0 . ^ 0 4
- n . 0 n fl
- 0 . OOB
- n . nn4
- 0 . o fl 4
- o . on4
- n .004
- n . no4
-(1 . fl 04
- n , o o t<
- '1 . Of)4
.01*
- a . n ri4
- n . n 04
- (i. fi r>4
—0 . 0 0 4
- n , n 04
!\H 3 —^
Uf5/I.
# « # » » 0 O-tt
T KN
Mf3/I.
, p^ n
i .410
. ripn
.022
• fl i n
1 . ?50
] . 180
1,14''
• n»n
. o?n
-O.nin
-0. nI0
-n. nin
-C . n i n
.ni ?
1.*00
1 . *570
1.400
.960
1.070
1.410
1.550
1.54"
1. * 20
1.720
1 .44 0
1.270
1.4*0
? . n7 0
. n4H
-ft. m o
. o?o
-0. nin
-n.mn
. n^ij
.n^ o
« n?')
- 0 . n; n
-n. o i o
- 0 , 0 1 '.)
? . oQ 0
1 . 1 70
1 . 120
i , s*o
OR-p
MR /)..
.004
.0)4
- n . on I
.022
.009
. « 11
- o . o o2
. on7
. noi
-o . 0 0 2
.019
.00*
.10 5
.018
.012
.015
. oi*
. nis
T-P
Mfi/L
.0*7
5 .9*0
. 049
,04*
0
7.500
.0*8
. 0^9
. 070
.025
.015
.nip
.013
. 044
. 0 4n
8 «5 0 0
9 . 300
* . * 0n
2.500
1 . H90
.230
. 011
.113
- o . 002
.055
.07*
, 044
. 0*4
. 07 1
. 1 04
.01*
. 049
- 0 . oo2
. 01 5
.02?
510?
MG/L
l.mn
5.*20
4.400
6 . 0 70
6.590
6.P70
-- 6 . P 0 0
7.520
6.530
6 . * R0
4 . 7»0
*.no
3.720
*
1_ A x' F
STATION
0 ' TF
^
MA
A. A.
c 7 . 7 0 'i
c 7 . '10 0
c 7 . i nr:
C Q 7 n r,
r-n.h n "
5 5 . ?n^
6 1 . o on
co.4rn
c fl . a o 'i
K7 . o n .i
c 4 . o oo
51,40/1
OkF F C HOt;F F - M i l
«
9 I i p F a {' F
CA
t*
£ a . !-■n m
c o , o n .' i
5 5 . f) o n
CS fl 1 "i
c 4 . r, o o
^ *i • r; 0 o
c 7 . n p .T
a 1 . n r, r,
f.n.an i
Mr,
CL
MC/ I .
in n n n n n n *
T-FF
SCA
y G/ L
«* «««««#
' 1 0 / 1.
A, A.
■**#** #<nt
^ . A.
4***3
«■*
4.m o
4 • inn
4 ,?nn
A.110
4 .npn
L . UT0
4 . ?40
A . 1 on
A . T5n
A.10 0
4<).CR| )
SO . 0 .>0
5 2 , ooo
s o .« on
S 6 . 4 ■'n
S 5 , i>t'0
4 d . s o (j
4 9 ,cno
.19. a 0 0
a n . * on
1o , o 00
10.000
1 0 . OOO
l o . ooo
10,900
l o . ?0l l
17.700
1O . ? 0 0
3 6 , Fi nO
1 4 . POO
ft a . o a o
7 . o () 0
on . o o 0
qn . ooo
oo.non
oi.non
7 7 . 9Q0
o i .floo
Q1 . ? 0 o
0
0
0
0
0
0
0
0
0
. 1 60
45.9^n
S I . n "n
4 9 . 4 10
4 8 , “3 ^ 0
1 a.sol)
1 0 . ooo
1 a . fi n o
06,700
P S .0 0 0
R 7 ,?00
0
o
tl
4 1.900
Mn/L
■ tf -t t# '1
1 / 1 fi / 7 -1
?/ A/ 7^
1/ 7/71
4/l?/71
S 7 M/ 7 1
A / t' / 7 ' >
7/in/7')
o / 10 / 7 1
q/IP/71
10/10 /71
11/14/71
lP/pr/7">
1 / I 7/7*.
P/1 V 7 i
p / p 1 / 7 -4
3 / 7/7A
1 / T fl / 7 <1
4 / 4/7 4
4 / 1 0 / 7/,
s / o /7a
^. /
4/^4
A / 1« / 7 a
L'lKf-'
4.in n
"? . ^ o o
4 . <\0 0
T , PfIO
A . 4(10
, f>no
4 .10 0
4 . loo
4 .Ann
r .Inn
.P n n
4 2 . Ano
4 7 . ?"0
4 f , . o^n
47.Ar*0
SO . 0 r' n
s 8 . n r (1
c5 . a ' 0
70.4
17,000
1 ft , A 0 0
16,000
1 6 , 0 00
1 A . AOO
10.400
I m , n o ii
2n. ooo
I f . ppo
fl
fl 4 . 7 0 0
fi ? . 10 n
n i .700
R 1 . Q0 0
« 7 , 3 00
flH , 4 0 0
on . 6 0 0
■Q4 , « 0 0
oS.900
. 06,?0 0
■
41 . 5 0 0
4 P . 3 r* o
6 ? . oon
6 1.10 0
61.000
SB , 7 0 0
61 . 4 " 0
64.100
6P.400
0
0
0
0
0
0
0
0
t 190
•
•
085
617
0
0
0
0
0
0
0
0
•
a2o
?4 0
- 0 . P?0
*
>CjJ
Co
*
1 / 1 ^ /T>
?/ (>771
1/
4/1
C/
'*/.
7/1
7/71
?/71
8/7T
5/ 7 - ?
'V73
0/ 1 n / 7"'
<5/ 1 ? / 7 1
In/i n/7"*
n / i4/7i
1 | /I A / 7 1
1 1/ I 4 / 7 1
1 p /P O / 7 * ’
V/17/74
?/l3/7A.
7 / 3 ! /74
1/ 7/7^
! / ? [ ) /7 /.
4 / A/74
4 / i Q/7A
q/ 9/7 4
ft/ 4 /74
f t / 1H / 7 4
] 1 . Qn o
17 . ? n o
2 a . p an
?o.?nn
Pft.finn
? 5 ,An
28 .» a o
? H . 'Ja ^
? f i . ?no
n.n.
0 .0 .
Mrt/|.
*SAT
*#«■««■* * *
°*0 n o
c.infi
O . fl fl f)
o ,?nn
■',^(1(1
f'.nno
f'.inn
o
f .frfid
ft. i n n
2 ] . S n f'.
21.^ " 0
21 .
p
15.000
2 1 .1oi
1 f t . =mn
1 ^ . 5 n r>
pn. 7no
21.1^0
?^.Snn
P1• P *n
? 4 » flo r.
;? 7 . 5 n (i
LAKF
fi . 5 n n
h . i nn
fi. ?no
9 . 3o o
7 , i nn
<3. non
7 . ano
H. 7no
7 .5 no
7, 7nn
7 . t'flf!
ft.^nn
f -. l no
6 *6no
94 , ? l l
<5A . Q n 7
1 no . ono
09*1 ^ U
96.^41
71 . L ?9
«0.7ft9
n
* 3 . g 44
fiO.769
96.1=91
0 4 . Tifl
° 3 . l >2
9 1 . 1 7ft
RI. 1 11
9?.7«4
R2,Anq
9 6 * A ft /
fi3.^33
(J 1 .O f ’ ?
* 6 .? r 7
ft?.] 4 1
7 7 •? T 5
fl 1 . 4 ^ 1
Qk FF CHflRFF
PM
F iFI.r)
-
Pli
M-K
MFO/L
»
c c m o
F IF L n
^FCCHI
CW
*•*•####
P ,?00
B.P^O
f?,cfiC
P , 1^0
f, f. nfi
fl.fton
7. s no
0.150
7 , ?O0
fi. ?oo
P . 1 00
p . i nn
n , i no
p,?oo
fi. POO
f i . ?oo
p . 150
P . 4 ft 0
p. m o
p . ?o n
n,?nfl
^>. 400
,i on
p
7.400
3.200
59 o . n n0
n
5>. « 0 0
n
3.200
l.?4n
1 . n<*/i
? . fion
?. 7n o
?.«20
?. 640
6 ^ 0 . O n'i
0
" n
n
6fio.onn
0
n
n
n
n
n
n
n
n
0
0
P ,5 7 ^
n
0
? . 700
P.370
?. 730
?.*80
;s. ft4n
?. 790
3.730
? .6 9 0
?. ^ 2 0
3. ?80
1 . n fl o
6 3 0 . ono
64n.OOO
67o.OOO
6 1 0 . onn
6 * 0 . OOO
6& 0 . 0 n 0
6^ 0 . 0^0
6 5 0 . onn
615.000
5 9 n . 0"0
5fio.ono
5 ? 9 .0" 0
A fifi . 0 n 0
6fi 0 . 0 n 0
6 9 n . nno
7 3 ? . onn
7 4 0 . onn
0
n
0
n
0
0
0
n
0
n
n
7 3 fl • 0 n 0
n
i
y-i> * fl** <
*.* <
}■ w
*« <H;. tt
*
| AvF
STATION
n at r
h f Tl - K
T l - '
« «. « # * # ■» a-
Tk m
Nh 3 - N
►
.’ G/ !
<H> « ■» I Ht <!■o
w r/L
Mr; / L
*«# # # ««*
MG/L
. ■■IOC;
. n o ?
» f l u f)
1 ,AA(I
ft/7">
. 17*
1 . ?1
- 5/
7 / 7 ?
. o97
.003
004
. n ?n
. r ^ l
1 .
- r .
4 / 1 ? / 7 -a
. 1 1 ?
*/
H / 7 1
. 1
-
ft/
S / 7 ?
. 1
- 0 . 0 04
- n . n o f l
-
. 0 ? ?
- ti . 0 -o p
-
0 / 1 2 / 7 ?
-r
. 0q4
-
1 n / i 0 /7 3
.035
- n . oriA
-
. 2 ? 4
-n
-
/ 14 / 7 ?
-n
. o
f'f'
. 004
1 ] / 1 4 / 7 1
r.
0
]1/
n
0
l i / 7 1
00
.
- r..
1 / 1 7 / 7 4
. 1 nc:
- 0 . 0 fl 4
? / 1T / 7 4
, O B i
- n . n oi
1? / ? ! ' / 7 1
■?/■> \
-0
/7A
004
.004
• 1 ft 4
- r
1 / 7 0 / 7 4
. ^ f t
- * . 0 0 4
4 /
. 1 /» f'
- 0 . 0 0 4
7 /
7 / 7 4
4 / 7 4
. 0 0 4
. 0 ^ 0
. O0S
. 0 4 2
.001
. 0 1 7
5 . S 4 0
0
7 . 7 0 0
1 . 6 ? 0
.044
. 1 OQ
9 . s o n
.0 0 9
. 0 C 3
9 . 7 0 0
. m n
1 . ^ s o
. o i l
. n«o
6 . 7 0 0
0. m 0
0. n i 0
0 . n 10
0.010
0.010
0-
1 . 1 4 0
- 0 . 0 0 2
. n ? 7
3 . 7 0 0
1 . ? * o
- n . 002
. 040
.7 2 0
1 . nQO
. 0 0 3
.0 4 9
. 4 8 0
10
002
. 049
1 . 7 0 0
, <570
. 0 1 8
.0 43
5 . 6 6 0
G
0
n
0
0
0
1 . 0 7 fl
. no6
. n ? 7
4 . 5 0 0
P .O ^ O
, 0 0 7
, 0 ? 1
6 . 2 0 0
1 . 7 0 0
. 0 1 7
.04ft
6 . 3 4 0
1 . 9 1 0
. n 14
.0 7 0
6 . 0 5 0
1 .ft^O
. 0 17
. n c 4
6 . 6 S 0
0l
. 0 7 0
7 .4 2 0
. f l 7ft
6 . 7 6 0
1 . 1 *0
n
. n?A
4
.
MG/I
] , 9 n o
. r
DO?
- O . n n f l
0
S IO ?
^ G/L
#■»*«##**
. 0 4 0
. 0 0 4
0.
T_o
O P-P
1 / l f t / 7 1
n / i n / 7 ' ’
n
LAKF
Pk FFCHOFFF *
flfrstHK-ttft-iUJttttettfia-ntttttttttinnsttsttfl#*#
? /
7 / 1 P / 7 T
<** # * * * * *
UnfTO
f.
wn/i.
*«•«*«#*«
*M># # #
- 0 . 0 1 fj
. n?n
-0
. n i
•
0
n=|t
(l
- n .
1 . 5R0
.
- 0 .01 0
7
. ?7 0
. 0 1 6
. 1 ^0
• 0 4
ft
n
0
4 / 1 9 ' 7 A
. ft04
- 0 . 0fl4
• Of t O
?
. 0?1
. 104
b
c /
« / 7 *
- r
, m
n
1.
nso
. 0 14
. 0 1 7
6 . 6 6 0
fk/
ii/74
. 1 ^ 4
. n 7 t
-
0
1 . ?no
. 0 0 3
. 0P2
4 . 6 7 0
ft / 1 fl / 7 4
. f i t
- r
7
] . ft60
. 002
. 0
1 P.
3 . 5 2 0
r
. 004
.
0n 4
. 0fi4
-
0.
n i
. M
.6 6 0
3=
CO
QJ1
#*#**♦»#*#«*###*##«##♦#♦»#♦«♦###
*
LAKH
f-
S T A T IO N
Df , I f
4/1
P ./ 7 "*
5 / *1 /7 1
A/ 5/77
7 / 1 n/77
r */ 1 n / 7 7
9/13/77
1 0 / 1 n/7 T
1 1 /I 4 / 7 1
11/14/7^
1 1/ 1 4/71
1? /3 0 /7 7
1/ I 7/74
? / l 7/74
3 / 3 1 /74
1/ 7/74
7 /3ft/74
4/ 4/7 4
4/19/74
r,/ 9 / 7 4
* / 4/74
6/1 P/74
CA
f-.A.
*
MA
MP/L
c^.flnr
cR.qrn
F 6 . f1fto.
4 . iftn
4 . ? 0 0
4. ? o n
56.60 n
4 . ftRO
5 9 . fl ft 0
4
5 9 , r> o r
4 . <' 4 n
sfi.ndfi
E 9. ftftft
f 0 .prn
5 H . n ftft
KR.o^r.
n
. rnn
4 . 7 1 0
4.14ft
4 . 7 ? ft
4 ,?r>n
4.14ft
o
n
n
5 4. riftn
c i . ^rift
c 4. i'o r
5 3 . n ftri
4 . 7 0 ft
t> .
300
4 . 3 0 0
7 . 9 o o
5 3. nno
4.30ft
c 7 . ftftft
4 . non
c 6 , f! P 0
4 . 7 0 0
5 5 . 0 ftft
4 - 7 0 0
0
4 . 3f t f t
6 4 . n ft n
£ . ftftft
4 . ft ft
O k F EC.uflHFF
-
p 1l
*
H n f T O
a.A.
1/ I 6/71
3/ 6/77
1 / 7/7T
LAKF
6 i . onn
4 . 1 ft ft
«■ «•tn> * * ^
ftu-Ott'ts-O'tV'fl'
CL.
Mr,/l.
h h h h h h h *#
4 9 . ftftft
.o n e
5 2 . ft ft0
5 n . i r.ft
5s .■
»o n
54.ooo
4 6.100
4 6 . 4 ft0
4 7 . ft0
4 5 . flft0
44 , P ftf)
0
0
4« . ftft (1
1^.000
. fto ft
19.00ft
I » , q ftft
I9.300
1a . « o c
17.300
1 P . 000
3 9 . 6 0 ft
1 6 .POO
1 P . 1 O0
0
0
Rfl . ft0 ft
R 4 . ftftft
R 9 . ftftft
PR . 0 00
99.000
90.000
R9 . 1 00
91.00ft
9 1 .p 00
«3.^0ft
Rl,«0^
0
.ft
0
0
0
0
0
17.000
16.900
1 7 , ftOO
1 7 . ftftft
I 6 , 9 ft0
1 6 . ftft0
P6.. 0 0 0
R6.R00
P P . 900
P7. 7f)0
P 5 .?00
P7.40 0
0
4 t . 700
l « . 4 ftn
4 P . 5ft 0
7 3.50-1
6 3 . 5ft0
6 0
5 1 . POD
4ri • 30 n
4 0 • P ft 1
45.4ft 0
4 S * ftftf)
49.40 0
5?.6ft0
“
SS.A^O
5 5 . 4 ft0
*=;o . 4 n o
WR
A. 4 .
I9
17.4 00
lP.flOO
1 ». -=oo
19.300
l 6 .son-
P S . 600
9 P .3 00
94.^on
9 C .900
96.30ft
Sr 4
MG/l.
T-FF
*tC, / L
###•»#***
0
ft
0
0
0
0
0
fl
6-4.60 0
56 .40,1
6 0 . °0 i) ,
6 1 . 6 ft.)
6 P * 4 ft0
ft
0
0
0
0
0
0
0
.420
. 040
.614
0
ft
n
0
0
0
0
0
0
0
.400
.310
- 0.020
#
LftKF
OKFFrMoRFF
- P\y
<t
***«<(#«»»**»*#»#*■ *****»»■#■#»#*##*
i jk-f
<;t (. t t 0 n
O'TF
TF ^ P
l.)r,_r
14.30 0
17.3on
2 2 . 1 no
21 . O o o
?7,?nn
?o . s o n
29,o*0
1/ I 6 /7 ?
■?/ 6 / 7 ?
?/ 7/7?
4 / 12 ' 7 ?
c;/ s / 7 ?
it/ S / 7 1
7'/1 0 / 7 ?
a / 1 r /7?
Q / 12 / 7 ?
m / i o/7?
11/14/7?
? P .KOO
3 1 . 0 n r-
1/I 7 /7 4
2 2 . ion
?/1?/74
? / ? 1/7 4
?/ 7 / 7 4
1/50/7/*
4 / 4 /7 ^
A. / 1 9 / 7 4
5 / 9/7A
A/ 4 / 7 4
ft/1W/7 4
3n,?"P
29. son
1B , r: n n
2 ''. ftc n
2] . " o n
2 1 . fl" n
2B . S n o
2 3 .s o o
24.700
? H .7 oo
2 7 . ft o ()
si r;F ACF
n.o.
vn/L
«#*■!(##«#
P.O.
<SAT
tt « « 4 0 « a 4
PH
F IF Ln
**■» ■»# »■»#
98.^7?
« . A00
9.700
7 . non
P . 900
n , no n
7.200
1 0 2 . 1 OS
flfl. ft 36
q q . oo9
fl . ? 0 0
a.SSO
93 . 7 6 5
ft. 4 5 0
fl . 4 10
7 . S00
9 7.403
n
fl . 0 o 0
0 .420
ft. ? o o
fl . 0 0 0
fl . ? O 0
fl . 4 0 0
fl . 4 0 0
n . 200
fl . 4 5 0
10 , ? n n
o
f t , ooo
7.200
10.100
9 . non
0 . *00
9 . floo
7.900
9.420
? . 0 o0
7.A00
7.400
7.100
7.^00
7 .? 0 0
93.«=t a
1 0 3 ♦P 9 6
9 2 .? 0 8
112.22?
9 0 . nnq
97.727
1 o 3 . 1^8
AS.P70
I n <*,. fta 7
9 0.909
9 b . 122
fl7 . 0 S 9
S4 . 5 2 4
9 6 . 1S *
9^ ,in 5
M. 4 00
fl , O n O
a .4 0 0
fi. ?o n
fl . ? 0 0
fl.ino
7
n
. ft o r!
AL K
CCMO
MFIO/L
##«##«##
fif ld
6 5 0 . no;)
67 5.000
0
0
0
640 . 0 0 0
610.000
62c .000
620.010
61 S . O O O
690.000
62=.00 0
2.700
2 . 390
2.720
33:1.0 00
2. *9 0
2.*80
2 .AH0
3.760
?.A70
O
■ih»■» * » »■» #
2.700
2.600
j0
3.200
? «04 0
2 . H00
2 .*00
P . 660
2.*00
2.75'!
2.760
2.780
3.320
3.170.
SECCHI
'
60^ • 000
55 5 . 0 0 0
54 0 . 0 0 0
6 7 c . o o (.)
690.000
690.000
730 .0 0 0
73 0.000
74S . 0 0 0
1 2 4 . OOO
111.000
13ft.000
25.000
39.000
41 . 0 0 0
16.000
170.000
92.000
9 4 . 000
50.000
0
6 4 • OOO
109.000
0
24 .000
23.00 0
3 8 . 00 0
32.200
A 5 . 000
0
0
A37
i
ft
( _ ^ F
t
s t a t i o n
9 MQ F Af'F
D/\
ND"-f>J
Mr./L
w c ./l
* * w # # ■ » # tt
1/ 16/77
?/ A/77
1/ 7/77
4/l?/7T
S/ H/73
A/ 5/71
7/io/73
a/lo/77
9/12/77
ln/1 0/77
1 1/14 /73
1? / ? o / 7 3
1/17^74
? / l 3/74
? / ? l /74
3/ 7 / 7 4
7/50/74
4/
4/74
4/14^74
A38
R/ M/74
A/ 4/7 4
A / 1 H/74
*-*n n n n n »«
# -tn> -tv -t* - i n n t
.^2
-n.oi?
• " n 3
.no?
-0 . "04
- o . n n?
- o . on?
. 3 5 ?
•n.nni
. r| p 7
n* A
- n . n o fl
. " R0
. nr>7
- n . 004
."dr>
. IQ ?
. 21 A
.If?
- 1n i
. lop
.1M
,
. ?
*#####«#######*##»*#*«##«*#»«*»#
O k F ^ H D ^ F - Pi 1
w
fnnnn>***4nnnnnnnnnnnnnnnnnnn»4n»#-i»
7
H
. 3 0 ?
, S » 4
.00 9
. n n?
- o .nn4
-o . n o a
-n .ono
-0.004
-0,004
- 0 . 0(14
- 0 . 004
-o. o n4
- n . no4
-0.004
. 00 *
- o . nr>4
-o.no4
- 0 . 00 4
-0.004
- 0 . nr>4
-0.004
MH3-K
M<V1
#»*#*#*#
* 0A 1
• 0 ?'l
.075
. o 3 ri
• o 4 i.l
. o? o
-0 . 0 1 0
-'1 . 0 1 0
. n ? ‘i
- 0 . 0 10
-Ii , 0 1 0
, 07ft
-O.oiO
. 0?0
. 0 ?rj
-0 . 0 1 0
. 1 4f)
- g . o l [)
. r?o
. 0? n
.013
-U . 0 1 0
TKA!
nn-M
T-P
/L
# # *■ »*«# #
MG/L
ft«■ftftftft*-l>
1 . 1^0
. 0 04
1.330
1.140
.09 0
.002
. 0 02
.009
.nn^
.010
. 021)
. 0?5
. 01 P
. 0^5
. 043
. 0«0
.010
. o?3
.OP?
.032
. 021
MG/ I.
1.500
1.310
1. *40
1 ,?50
1.17 0
-0 . 0 0 2
. 0 03
.003
1 .370
? . 060
1 .^5U
1.540
1.370
—o • o o 2
,002
-0 . 0 0 ?
. nos
.008
? . 1 AO
1.560
1 . 640
? . 040
?. o3 0
1.710
1 . ?90
1 .*51 0
-o.no?
. o 02
.003
. 0 13
.019
.009
- n . 00 2
-o . o o 2
. o?o
. 030
.022
.027
. 01 A
.024
. 04A
. 0 C=4
. ft?4
. 0?2
.0 1 1
sin?
^fi/L
««««««««
3.160
1 . 900
6 .ft00
fl, 9pn
fl - 1 n o
5.300
4.9Q0
1.360
, OA0
2.730
6.010
3.600
6 * 040
5.970
5 . AHO
4.«?0
5.010
7 . ?on
5 , 550
A. 760
4 « A9 0
4 • OAO
*
| ftw F
7
S T AT T
n«.Tf
•(}•»<>«. * * # *
l/lf./7T
?/ 8/7T
1/ 7/71
4 / 1 ?/7T
( ;/ s / 7 i
A /, * i / 7 1
7 / 1 n/71
fi/K/71
Q/i?/71
10/10/7^
1 1/1 A / 7 1
1? / ? 0 / 7 3
1/ i 7 / 7 i
? / i 3/74
7 /3 1/74
1/ 7/74
T / ? ' 1/ 7 4
i / 4/7A
4 / 14 / 7 4
r;/ 9 / 7 4
t / u / 7A
A /1 M /74
LAKE
CA
A.A.
■IHHHHHHHf
5 4 . 7on
Aft.Af'l)
. nnfl
^ n, 4oo
0
4 . POO
4 . ?o o
4 4 ,COI!
S 4 ,0 0 0
S ? . 00(;
SI .-100
5 f>. o 0 n
^ft.400
5. 3 . 4 n o
*5M. o n o
c 4 , 4 on
c M. 0 n0
«?h . non
= c . onn
c 3 . f>n o
5 4 . o fi o
3.900
?.«P0
4 . non
0
•=13. 1 no
46.700
47.100
4^.400
4 7 .4 n0
48 . 7 00
*F? • 0 0 0
c ! . ooo
•??. roo
^4.0^0
cft.i'on
. onn
cp. nrn
e h
* 3 . n no
6 7 . r fl f,
-
*'■
PIT
ci: cFA C F
K
w r, / 1
»#«#««##
N*
ft. a .
^« 0
OKFFCHOnFF
4.030
4.0*0
4 • ? 0 tl
4,430
4.100
4 . ?on
4,300
3 . 700
3.700
3.900
4 .ftOO
4 . f 00
4.^00
e.ftOfl
4 . ft 0 0
51.000
49.000
40 . P 00
48.? 0h
48 . 0 00
4 7 # ft 0 0
53. 40 r
sH. b0o
S f t . /, n r
4j •4 n r
fl . 6 .
##«##««»
sr 4
CL
MA/ |
.
MG/L
»4>4«ae4»«
T-FF
wfi/L
? o . 000
Q?
000
n
0
2o,OOO
10.000
1<3. 1 00
13.PP0
I P . 700
o q . 000
q o . 000
Q0 . 000
q ? , ono
ftq . O 0 0
fi fl . 3 0 0
Q \ .POO
P 1 . f>0 0
P1 . 100
0
0
n
0
0
0
0
0
r.
fl<S . O 0 0
pt; . ? 0 0
0
? 00
0
0
0
0
0
0
0
. 120
.042
• 210
0
0
17.100
17.700
3 4 . fi 0 0
17.000
19.S00
1Q. 0 0 G
17, ? 0 0
1A . A 0 p
17.000
I P .100
1 7 . OOU
17.000
20.000
1P.«00
1 9 . fl 0 0
l e . OO0
PS.«00
«1 . 5 0 0
0
4
1. .
44.200
po.-?of>
p q . 2 oo
4 Q. 5 0 0
fj 0 . 4 0 ()
Afl.ftOO
5ft . 4* 0
ft <=. 50 0
QO . 0 0 0
RQ . “ 00
'51.400
9 * . 5 On
1 " 1 . 100
5 ft. 5 0 0
5 P . 90 0
6R.600
71 , S 0 (i
0
0
0
0
0
0
-220
.210
- 0 •0?0
00
<£
>
>
«
LakF « ;t a t to n
■
«■# <*
n.n*
” G/ L
»»#«&##«
1/1 ft/7?
2/ 6 / 7 1
1/ 7 / 7 1
4/12/73
«;/ R/ 73
6/ 5 / 7 1
7 / 1 0 /73
R / l n/ 7?
P/1 2 / 7 3
10/10/7?
11/ 14/ 7?
1? / ? r / 7 ?
1/1 7/74.
? / l 3/74
p/31/74
1/ 7/74
i / ?n/ 74
4/ 4 / 7 4
14 . i r n
17. 4 o n
21.900
20.200
25,700
28. =>00
2 9 . 7 no
29. SH0
2 * . 1 r0
2P. 3O0
2 0 . POP
1 5 . nno
21 . 1=10 n
1 7 . nro
2 o . n no
2 0 * ft 0 0
21 .ono
2 5 . ^nn
1 n . 500
Q. 7 0 0
7.700
P . 400
7.^00
7.200
P. 1 00
■iumi-'
)
)
)
)
4/19/74
e;/ 9 / 7 4
ft/ 4 /7 4
ft/ ! « / 7 4
)
o
21.500
24.700
2 7 . 7 no
2 ft'..c no
O K F F C M n q FF - PI]
*
Wn T T 0 W
TF^P
i; g - c
# w <* #■»>#« <t
n * tp
)
f
L^KE
n
ft.400
6.700
10.100
9.500
7 , POO
9.000
7.600
P *720
7.flOO
7 » a00
7.500
7.100
7.500
« . 10 0
P.O.
<*SaT
PM
FJFL' H
AlK
/L
wfo
*#•»#■#•» oo-
*#•» {nnttm
*#■»■* *nnn>
100.9ft?
10 0 . 0 0 ('
B7.cnn
91.104
95.172
92, m e
1 0 5 . 19 5
0
m . 01 3
ft4.PlC
112.222
93.137
RP.ftlft
9 2 . 7P4
P 2 . f t n9
Qft. PP9
a ft . ft ft7
95.122
PG.215
8 4 .e?4
94.917
1 0 0 . ono
« .400
P . 400
ft.1 0 0
n.500
P . 400
P . 600
7 . ft00
A . 320
7.QO0
P . 1 00
p . 100
a . 400
P . 400
P . 100
p . 450
2.700
2.600
0
1.300
l.ODO
? . P40
2*560
? . f t 70
2.590
2.720
?.38n
2 . 700
2.390
.
P . ?40
P . 400
fl . 1 0 0
p . ?no
P.400
P . TOO
7 . ft0 0
2.670
2.^00
2.700
2.900
3.*10
?,P60
?.P90
1 * 32 n
2.980
C C ND
FIFLD
*-» ttsnnnt-«
64 =
.
non
655.000
0
0
0
6 4 0 . OPO
610.000
6 2 5 . OO 0
62=.0^0
630.000
6 9 0 . Ono
6 3 5 . ono
410.000
6 2 0 . OOO
5R5 . o n o
565 *000
6Pl.ono
6 8 0 . Ono
6 9 n . onn
730.000
7 2 5 . OOO
75ft . OnO
secoi
C*
*####«#*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<»
L^r
9 T £ T T0 N
rifttr
l(i/1(i/7T
11/I4/71
15/?^/?^
1 /I 7 / 7 4
?/i7/7A
7 /7 1/7 4
1/
7/7
4/
4/1
q
*/
7/74
n / 74
4/74
®/7a
« / 7A
4/74
A/1 « / 7 4
■. O k F F t w o r F F
-
p 11
*
7
NfP-N
N'R/I
NCl-ivJ
^/L
1 /I ft / 7 ?
? / ft/7?
"V 7/7"’
4/17/7?
<=;/ P / 7 3
ft/ S / 7 ?
7 / 1 n/73
«/10/73
d/i7/77
LrtKF
.no]
n
. 1a ?
!- 0 . n n 4
. nP=;
.r*9
- n .n oa
.049
- o .nn?
.on?
-0 . np4
- o . ft 0 2
- o .oo?
- 0 . 0 04
. r-?4
- n .np4
. n 1^ ]
.?n6
• 2’ 3
.141
- o .90n
-n.nnfl
- n .np4
-0 .004
- 0 ,0Q4
- P . 004
-0 .004
-o.0Q4
."11
. -i«?
- P . 004
-0.004
.765
.5*4
. ?4 P
. 0p 7 -
.010
. 0 04
-0,004
-o . o 04
-P . 0 o 4
.mi
-0 . 0Q4
N,W'3-K:
Mf j / I
»»«*##»»
T K Ni
MR/ 1
»**<»*#**
OR- P
MR/ L
***«»»*«
.oa n
1 ,P4f]
-0 .002
. o?o
• "?!
. m o
.o^o
.070
- 0 .n i0
.(146
1 .35 0
1.170
.030
1.700
1.410
1 .oftO
.121
1 . 140
.00?
-n . 002
. OQft
.0 1?
.013
- o .on?
.0(14
-o .nio
.014
. oft5
-n . n i o
1 .530
1 .o?o
1 .?n 0
1 ,740
1.770
.040
-0*010-0.010
. 1 ao
- o .m o
. m o
.n ? o
. 0] H
.04?
1 .*530
1.970
1 .^00
1 ,ft5o
1.^20
1.040
1 . oftO
? . o7 0
- 0 . 0 02
-0.002
.002
,oo2
.0Q5
.005
.002
-o .002
.006
.014
."17
' ,004
- 0 . 0 02
- 0 * 0 02
T-P
MG / 1,
.n?3
.076
.020
,04B
.0*5
.ooo
.017
.033
.076
.067
.076
.070
.073
. 07 0
. 043
.013
,015
.045
.Oft7
,073
. 036
.01 1
sirs?
*G/L
«»**««»«
3.120
1. ft 0 o
6.400
8.300
7.100
5.400
5.000
1 .230
-0 .040
2.670
5.470
l.ftOO
6.060
5.350
5.730
4 .720
4 .« 7 n
7 . ?0o
5 . 6 00
7.030
4.490
4.750
*
LAK.F
( tx-F ^T A 7"! ^f\
n ^ tr
«*#*#*##
1 / l f' / 7 1
? / ft/ 71
1/ 7/7?
4/12/71
=5/ 8 / 7 1
a / 5/71
7^1 0 / 71
fl/1 n / 7 1
q/i?/7i
7
NA
A .^.
6 0 . 1n0
6 0 . 8 on
57.000
ft 0 > n n fl
56.600
e A . ft r o
^.ftrn
6 1 . nnn
c4 . 4no
Di<EFCHOHPP
- ^1 I
*
1i ^nTTnw
K
l^r:/L
*#»**■*##
CA
*-R
a , A,
*■»*<*»■»#■&
a
rL
.a.
wn/L
«h h h k h h h >
4.400
4 3 . ^ 0 0
4.100
4 . ?on
4 . 24 0
? . =38 n
4.510
4 . ? 10
4.000
4 . oq 0
<54. n n o
2 i . O P O
5 2 . nno
1s
10/ 10/7?
11/1 4 / 7 1
1P/ -50/ 71
t/ 1 7 / 7 4
2/11/74
3 /^1 / 7 4
1/ 7/74
1/ ?r / 74
4/ 4/74
4/11/74
c^.non
5 8 * ono
54,oon
^ 3. « no
<51. ooo
c 6 . 000
4 fl. fi n o
c q . fi n n
4*100
4.430
5 5 . or o
c i , o no
5/ ^/74
A/ 4/74
a / l H /74
6 1 . r no
4Q.O00
157 . fifin
4 . ?00
4.500
4.600
q . inn
1 . ^O' l
4.400
4.200
4 .Poo
4.100
l.«00
’ .ion
SC4
T-FF
MG/|.
> 'G /L
*««**««
*##****«
PQ .O Q O
0
n
.
0
17 . P O O
9 ?
4 7
.Q
n 0
1 7 . ^ 0 0
Q 1 . 0 9 0
0
0
0
0
0
0
0
0
0
4 5
.1
no
3 4 . 4 0 0
« 6
.
n
• 21 0
48.400
1 6 . 0 00
19.100
A l . 7 0 0
0
0
. 3 1 4
51.000
1Q . 000
.
n
0n
5 1 . f* 0 0
1 9 . 4 0 0
5 3 . 6 0 0
1
4 5 . s n o
1 6 . 4 0 0
4 7 . 1 0 0
4 4 . 5 0 0
P.
4 0 0
51 . «00
17.700
46.«00
43.400
47 . 7 0 0
4 6 . nno
17,000
1 7 . «00
5 0 .
?no
51 * « n o
S 7
.p
n
0
^4.600
46.000
16.000
16,000
17
i q
. A0 0
. non
l p .«
00
1P*»00
16.700
« 6
0 0
0
n
*92.000
9 1
Q 1
.
.
^00
0
OQO
0
p
Ac;. 0 0 0
.
10 n
10 0
1 0 1 . 2 0 0
03.000
. 057
n
ft 4 • 6 0 0
0
4 4 . 1 no
40.000
45.700
54.700
0
0
0
0
0 7 . 5 0 0
6 l . o n o
0
6 6 . in n
0
85.200
81.700
8 5 . 70 0
R8.*0O
nq . 6 0 0
0 4 . n.O0
9 6 . 500
1 n ? . 100
5 7 . 1 0 0
60.400
6 6 . 600
7
1.800
0
• 23 0
.260
-0.020
*
i AwF'
»<:■
TF^P
nG-<"
«###*«##
1 / l ft/7-?
15 . 0 n
? /
5 / 7 1
T/
6 / 7 ?
] 6. oru)
?. 2 . o n n
4/1
1 /7 T
5 /
A / 7 1
n .n.
MR/I _
«■«*##■»*«■
o .
ri
s . i o o
? a . o n 5
7 , ^ 0 0
2 P , 4 n o
a
. »on
p
. 4 on
o / l
? O . S r ^
V T 1
q / ) ? /7T
>*«*»#**
nKFErMoocp
3 n . 1 " o
0
o . o o n
.
MfTC/t
# -3-«• tt« •» *<*
3.200
3.100
PO ,?17
fl. l o o
0 5 . I 22
P S .076
1 0 7 . AO?
0
116.0P3
91,139
1 0 0 . fl 0 0
37.079
P . 5 0!?
P , flOO
p . 4no
p , A-30
3.100
3.400
3, non
9 3 . n 14
1
o
fl , 1 0 0
2 H . ? 0 0
7 . ^ 0 0
? ? . o n n
p .floo
1? / ? 0 / 7 3
\ 5 . 5 n p
R • 7 f) 0
1 / 1 7 /74
21 . Q c 0
p
? / l> 3 / 7 4
1o . ono
q . ^ i i
? / ? 1 / 7 4
? ').q o 0
P . 4 0 0
1 /
2 1 . noo
a
2 3 . 10 0
fl , p n n
4 / 1 9 / 7 4
? 5 . o n '1
P .700
S /
Q / 7 4
25 , 1 oo
o . 4 o n
ir o .o o o
fl.POO
A /
4 / 7 4
3 fl . 4 n o
^ , ? o o
1in fl . 4 9 4
3 n . o 0 n
Q . 0 o 0
11h.0«3
fi , 4 0 0
p . 000
r / 7 i
7 / 7 4
3 / ? n
6 /
#
ftl.K
pw
Firtn
««««
1 1 / I 4 / 7 ^
\ n / l
- p i!
*.100
P , 1 00
P .4 00
03.137
\on
1 0 . 5 0 0
? S . p n n
S / 7 T
n .n .
9 SAT
9 .5 0 0
7 / 1 r /7T
/
^k f
<■ ctiPFarc;
n *t p
a
l
/76
4 / 7 ^
A/ 1P / 7 4
. 1 on
. U
7 . P 0
0
0
92.045
102.151
93.T33
9(1,111
10 1 , 1 4 9
95.122
In3.c71
p
a . loo
p .sno
fl.l oo
fl.350
0,500
0.500
R, 1 0 0
A . 4 00
P.90O
3, n o n
?.520
2 . a 30
? . 69 0
2.310
0
2.370
2. M 1
p, 66o
2. *7o
?.«40
3 . fl2n
2.*70
3.000
' 3.420
3.29 0
f
CCNO
SECCHI
rf l n
CM
fllHKHHHttt
66 0 . 0 0 0
665.noo
6 4 0 .non
0
0
6 9 n . 0"0
67^,000
625.00Q
625 .000
64^,000
600.000
5 70.000
4\o,ooo
625 .000
645 ,000
48 0 . 0 0 0
525,000
6P 0.000
7 0 0 . 00 11
7 30.000
750,000
74 0 . OOO
14.000
17.000
38.000
20.000
n
2 5 . 0 00
61.000
90.000
P 4 .0 0 n
70.000
33.000
0
29.000
21 . n o o
0
30.000
30.000
12.000
22.000
<>7. 0 00
0
n
l.AKF
a
4/1 1/73
. ?45
?/
?/
CiV * / 7 1
*,/ ^ / 7 ?
7 / 1 r / 7?
q / i n / 71
9 / 1 ?/73
10/10 /73
11/14/7?
i?/?o/7?
1/ I 7 / 7 4
? / l 3/74
? / ? 1 / 74
1/ 7/74
3/?n /74
4/ 4/74
4/19/74
q / q /74
6 / 4/74
*,/ 1 R / 7 4
1o 1
nn»
. nrP
,nnft
-0
.
m
0.
-
- 0. 0 ^ 4
_ n .004
.046
. 1 *9
•
.
r
??R
. n? 4
. O P?
.193
. 1?9
. oc o
. ni 2
. nniS
nr 0
.030
. n?3
.04 0
.04 0
. 0? 0
0
1,640
. 0()9
,1?4
1.630
1.44 0
1.600
.01«
.115
. n61
. 0^2
. 0=17
. 0^0
. 04 0
.
. n n 4
- 0 , 00q
. 0 ??
- 0 . 0 0 4
• 0 . 0 0 4
- " . no4
- 0 . 0 0 4
01 2
.n ?
*#■#**»##
004
- n . n n ?
. 0 0 4
- 0 . 0 0 4
- 0 . 0 0 4
. 01 ?
- n . n f) 4
-0
. 004
-0.010
■O . n i i ]
-0 . n 1 0
.018
.04?
.04 0
.03 0
-0 . n i 0
-0 . 0 1 0
. 1 60
-0 • 0 1 i)
. 0 1 0
- 0 . 0 0 4
" 0 . 0 0 4
-r.nrji
- n , n n
4
V fi/L
# ■» tv ■» * 0
• no?
.
S 103
T-P
MG/ f.
in n tin n n * #
007
.
Mrt/L
*
# a#-i* * * ■&»
- n . n o ?
-
;,/l
p ll
nw-p
M I,/ L..
T*!v
- 0 . n1 )
. 01
-
0.010
0
S/71
*/7?
lc ?
. ?* ?
. niR
.
Wf5 />.
XI
<•
/^/L
1/ I 6/7?
\ M 3 - K'
\C3-M
1— '
•
DaIf
OK'FFf'^D'TFE . -
1 .^ 9 0
0
-0 . ^ 0 2
* 0 25
-0.002
. no: ?
-0.002
9.000
9*300
fl. non
9.100
fl • 6 0 0
7.000
3 . 1 O' O
.091
.077
. 0«1
.OB?
. 093
• 640
.230
2.110
1 .P40
4.500
6 ■46 0
6.740
7.030
5*750
6.160
8 *2 8 0
6.000
- o . o o ?
. 0 1 2
6 . 4 0 0
-0.
. 067
7 . 1 6 0
.
7,060
1 . ?50
1.100
1 .440
1 . ?90
1 . 6«0
1 .69 0
1 . 090
? . 4fl0
1 . 690
2. 1*0
? . 760
-0,002
-0.002
1 . 9 « 0
- n .
1,?S0
3. 0 « 0
1 . 6 1 0
- 0 . 0 0 2
- O . n o ?
0 04
.010
- 0 • n 02
.017
.016
-0.002 .
.0Q6
.
. 0 1 4
002
no.2
.039
. 0?2
,035
.040
.034
.017
. 0<=I6
0
17
4 f l 4 4 4 4 # « 4 4 » » 4 # 4 4 4 tt4 *4 tt'»4 4 t H t 4 # 4 4 4
«
n * tf
MA
K
A, a ,
44444444
1 / I
ft/7?
?/
5/7?
3 /
ft/7?
4 / 1 1 /7?
=;/ h / 7 ?
*/ 5 / 7 ?
7/10/7?
q / 1 * /7?
9 / 1 ?/7?
1n /io/7?
57
, n n n
? / ? 0 / 7 4
4/ 4/74
4/19/74
^ /
<3/74
f,/
4 / 7 4
A/lH/74
CA
A ,A ,
44444444
S l . o o o
rX
A.
44444444
A.
MR/I
44*44444
1 9 . 0 0 0
9 0 . 0 0 0
ft ? . ooo
l a , non
5^ .o n n
4 , ? 00
? *94^
51 .n n o
1a . n n 0
lrt.o on
n ^ . o o n
5 ft . r<n o
ft 1 , 3nn
4 / . c o o
P 4
ft o . ft n o
5 , n 5 0
1Q .5 0 n
'iH.ROfl
5 fl, n m
4,570
? ,^ftO
55*400
Rfl . o
5 i
1p . mio
95.ftflO
5 9 , ? o n
5 9 . 0 0 0
1
. T o rl
0
0
0
n
0
0
. 1 5 0
1 7 . 7 0 0
P5 . 7 0 0
0
, 0 7f t
7 4 , 9 0 0
0
, ft04
74
0
0
4 ? . 5 0 0
0
,400
4 7 . 4 0 (3
0
1 ft , 0 0 0
P 0 . 7 0 0
5 0 . 5 n f)
0
4 4 , ft 0 0
] 7 , ? 0 0
5 7 . 3 0 0
0
4 5 , 0 0 1
1 ft, 0 0 0
B 5 . P 0 0
p p . 5 0 0
5 1 . 3 0 0
0
0
1 7 . 0 0 0
P 9 , 3 0 0
ft 1 , 5 0 0
p
1 5 , 3 0 0
n i
4 0 . P 0 0
4 , noo
0
0
1ft,700
, 1 on
0
P 9 , 790
1 7 , onn
4.000
0
9 0 , 5 0 0
15 . P
ft
r.
l« ,7 f)0
4 p ..
ft0 . 0 0 o
5^,000
4 7 , 0 r 0
0
0
33 . onn
3 H , c= O 0
c 5 , P 0 (i
5 4 . a 0 0
0
4 « , 7 0 0
?.7m
5 0 , ^ 0 f)
c ft , 0 0 0
5 4 . 0o 0
ft1 .poo
n
00
0
4 7 . POO
4 6 ,
4 , A0 0
T-FR
VG/L
♦4444444
0
? , n o n
4 , ?6 o
4 , ?00
4.^00
4,100
3,^00
3. 9 o o
4.0Q0
4 . ?0 0
5 .?00
5 1 . ft o
, ? o o
2 o . m n
sc*
/l
44444444
mg
.0 0n
=;<*.? o o
1o
4
0 On
£ , 1 ftO
5 1 , ^ 0 0
?/51 / 7 4
?/ 7/74
U 11
4,400
5
? / 1 ? / 74
4 , ? 00
-
1oo
1 ? / ? r /??
7 / 7 4
44«4«»#4
O K F P T H O H F F
p/^.
1 1/I 4 /7 ?
1/1
wr,/i
LAKE
44(t44 44« «44 4» t HI 4« 4 4 4 4 » » 4 4 « 4 4 4 4 44
00
n
a
00
5 1,00()
4 ft .
P00
4 7 . ft 0
5 ? , 4 0 0
00
? o , o o n
U 7 . P 0 0
1 » . ftO 0
5 3 , ft 0 0
1fl, «
5 1 . 4 0 0
1p .
n
0
70n
?
, noo
,
2 0n
1 1 4 , 1 0 0
95.^00
97 , 5 0 0
07
.ftOO
0
ft 0 , 4
.900
00
. 5 0 0
f t 5 , ftO 0
. 3H0
ftfl , 5 0 0
,?n 0
5 7
0
■SUMS- -O<Hf ^ -iHS-tt ■tut ■!*•!>
<>
1. AKF S T A T I O N
O'Tc-
3/
ft/73
c; /
R/7T
A/
S/71
4 / 1 1 /73
7 /1 o/73
0 / 1 n/71
<3/ 1 ? / 7 3
10/10/73
7 fmp
n.o.
rn- r
v fl/L
14 . 5 oo
1 ft . 4 ^ 0
21 . l ^ n
2 1 . 1o n
0.400
p.onn
o . l on
0 . POO
2 * . fto n
7. ooo
29.5"0
2 0 . lnn
A .* 0 0
o.'Jftn
o
28. ? «0
29 . s oq
27 , hon
2 1 .nan
21 • SO 0
ft. H oo
ft. s n o
1/17/74
21..7ao
1 r' . n a o
21 . ^ n o
3.200
fl. 700
a. « 0 Q
0 . ino
7 . 0 00
2/11/74
?/-3t /74
] 7 . nno
19.10H
1.0
an
7 ,r’
on
2 a . q on
9.030
11/14/71
11/14/71
1■
]/ 1 4 / 7 3
1 p/Pft/71
1/
7/74
7/?^ /74
2 ft. S n m
4/
25.
21.20 0
24 . n ao
2 7 . ft n fj
2 7 . r. a n
4/74
4 / 1 0/74
<^/
ft/
9/74
4/74
A / 19 /7
a
it- ■*>■!» Hum- -in* # # # # * # » #
OKFECHnf'FF-^li
«
;)»« ■»* * i h h m m u * « # e -tutu
■
>
««#«####
1 /I A /73
?/ 5/73
|_ A K F
« * it« » 4 4 « * 4
n.u.
*^AT
*###»##!»
02.1S7
fl 9 . fl 9 ‘1
1. 0 1 . 1 1 1
O l.U l
06. H i
92.278
1. oft. 4 l a
0
R 7 . 17^
H 2 . 3 7 rt
01.11 I
00.964
1 0 0 . OOl)
01.17ft
RH.773
7 .1 nn
01 .7*5 3
9 C. A41
99.222
8.A42
05.12?
9 3. o 0 9
7.?oo
94.70ft
S.Poo
ft. I no
7 3 . 4 11
75. m ?
,7nn
7*^00
a t„ k
pm
FI FLO
3.
«.
9.
a.
100
i no
3on
TSO
fi.'iSO
9 . TOO
9. 100
9.410
0
9 . 5 on
mco
ccmo
/L
FIFLD
##»*#»#■»
1.200
1.100
2 . 0 on
1.10 0
1.280
? . 9ftn
1 . non
? . AOO
2.770
?. 730
1.31)
n
9. 1*0
9.200
fl . P 0 0
9 . 1 00
9 . coo
0
2.700
2.370
9 . ?n o
9 . ?00
9. 450
ft . 1 0 0
9 . TOO
1.400
9.400
9 . ft 0 0
7 . 3 o0
p.ftno
? . ftftn
■
3. A ft 1
2. q 20
1.950
2.010
1.010
3.420
1.12M
.
6 4 c .onrj
660.000
650.000
0
0
6 0 0 . OOO
6 7 5 . OOO
6 1 0 . onn
66* .00 0
66 0 . 0 0 0
5 0 0 . OOO
600.000
6 0 0 . OOO
6 2 0 . OOO
46 0 . 0 0 0
6 1 ft . 0 0 0
64*5 . OO'j
515.0OR
3 2 2 . onn
6 H0 . 0 0 0
7 00.000
secchi
O
«•!>#•»#■&*■
(>
0
n
0
0
n
0
0
a
n
0
0
0
0
0
0
0
0
732.000
740.000
0
n
0
0
0
0
74 0 . 0no
0
LAKF
LflKF
n
a
STiTT^N
rr
3
N h i —k
Mfi/|
tt ft-iMUt iH>
MC ’
’-'V
Wf'/L
\C 3-M
* r- / L
1 / I ft/7?
5/ 5 / 7 ?
? / ft / 7 ?
. 1 *0
,?7<i
.?«?
4/11/7?
q/ h /7?
ft/ 5 / 7 ?
7 / 1 "i / 7 ?
fl/m/71
9 / 1 2 /7?
1o/in/7?
1 1 /I 4 / 7 ?
1 1 /I 4 / 7 ?
1 1 /I 4 / 7 ?
1? / ? o /7 ?
1/17 /74
?/ 1 3 / 7 4
? / ? ! /74
?/ 7/74
7 / ?0/ 74
- 0.004
4/
4/74
-
«
Pll
« n t Tc
####'>###
4 / 7 Cl / 7 4
=; / « / 7 /i
ft / 4 / 7 4
ft/1 a / 7 4
OkFECHOMFF
. 15»ft
- fi. o o p
- o .ooa
-n.fin?
- o . o">4
- 0 .0"4
.04?
.on?
.on?
- n .^04
-o.oo?
- n .oo?
- n .oo4
- 0 . P ft n
.o??
-0,004
- 0.004
-0.004
0
0
0
0
.107
.Ono
. 1 ftft
.?4R
.n?9
- o .p o4
-0 .004
-o .004
- 0.004
- n . 004
- 0 , 0 04
- 0 . o 04
. n q4
. 1 ^1
• 2*2
.net)
.019
-■'1.004
-0,004
- n , n04
- « , nn4
-0.004
. 0^ ■
)
• n?o
, 03.3
.010
.o?o
. o?0
0
-0 . o 1 0
. o? o
- o . o i i)
,01 ■
>
o
o ■
. 0 ? '}
-0,010
.O?0
- (i. n i o
-0 , 0 1 0
. o? o
,010
.oft'}
-0 . 0 1 0
• oftl .
-0,0]')
nR-P
t k .n
M/?/L
»<** * <n* * #
MG/l
SIC?
VG/U
T-P
MG/ l.
.148
8 , Q0 0
.018
-0 . 0 0 2
. n 15
. 0 04
.003
. 1?1
. 0*9
9 . 4 00
8.300
. 1?6
. 0*ft
,0^0
-0.002
—o . n o P 1
.017
.071
1,110
2 . 1p o
l . f tSO
-Q . 0 0 2
-o. 002
,004
.0??
.065
.045
0
0
o
0
.0] 0
.002
.017
-0.no?
. 004
.003
.007
-o.oo?
-o. 002
-0.002
-o . nf)2
0
0
9,200
8.500
7.000
3.400
.490
• ?7 0
2.000
3.110
0
0
4.800
5.500
6.590
7.350
*.130
1 * * 2n
9.540
6 . 090
6.420
7.240
6.920
1 .830
1 . ft 1 0
1 . ?fto
? , 1 00
i «ioo
1.520
0
1.680
1.840
1.850
1 .<590
].850
1 ,*70
3 ,1 ? 0
? .ftSO
0
1.470
1. ?30
1 .ftl 0
.0*1
, 0 36
.OftH
.077
.
,1*6
. i ?o
.082
.103
• 0 1 fl
.078
.018
A47
!
«■
I^AkF STATTQrv
0 * TF
»#*»#■»##
n
MA
k
A , ft .
#«***«•**
57 , ? o n
4 , 3 0 0
? /
5/7"»
4 . 4 0 0
? /
ft/7?
5 4. o n n
4 . 1 0 0
4/1
1 / 7 1
5 7. o o o
4 . 0 ^ 0
R /
M / 7 ?
b
S / 7 ?
c <3, ft n n
0/ 1 0
1.
’ ft o
*
4 . 1 ft 0
i n n
5 . 1 7 0
4,ftl
0
5 H . 0 O 0
3 . ^ 7 0
5 7 . Qn n
4 . ^ 3 0
0 / 7 ?
3 0 . onn
P . 5 0 0
1 1 / I 4 / 7 ?
5 1 . 0 ^ 0
3 . 7 7 0
/ 7 1
0 / 1 ? / 7 ?
m / 1
0
11/1 i / 7 ?
1 3 / P 0 / 7 ?
1 / I
7 / 7 4
0
n
1 1 / 1 4 / 7 ?
n jj
?,rtPfi
0
5 2 • o
4 . 0 0 0
=
4 .?oo
?
? / 1 3 / 7 4
5 4 . 0 0 0
4 .
? / M
5 5 . ono
3 . 9 0 0
7/74
5 4 . non
4
7 / ? n / 7 4
5 7 . 0 0 0
4 . 1 0 0
4/
4/74
5 6. o o o
4
. ?
4 / 1 9 / 7 4
f t 5 . r) 0 o
*
*70
e;/
<9/74
ft ? ,n o n
4 . 7 0 n
ft/
4 / 7 4
6 5 . 0 0 0
4 . ^ 0 0
ft/ifl/7 4
5 5 . 0 0 0
i . T n o
3/
A48
m ft/ 1.
*##<(###«
5 9 . 4 0 0
7/,l 0 / 7 1
/7 4
OKFFTMn^F
- PI 1
«
PnjTOw
1 / i f t / 7 3
ft/
LftKf
,
0 0
0o0
oo
0
Cft
A. A .
fl Ii-H>
w r;
A. A.
n
M(? /i.
5 1 . =; o o
ft 0 • 0 0 0
5 2 . 0 0 !)
51-400
58.000
51.403
53.009
5 0.600
4 ft . 7 0 0
?3 • 100
4 n*3 0o
0
0 ■
4 8.000
50 . * 0 0
r » . ooo
I P . 000
r « . n0 0
] 0 . 300
Pn.POO
Ifl . 7 o 0
19.100
19.100
3 * . 5 Of]
fl . 4 0 0
15.700
0
0
1ft,000
16.400
« 7 . O 00
fl ft . 0 0 0
*17.000
Re; . 0 0 0
lo^.non
<3 4 . 0 0 0
. 07.300
r q . qgn
flfl. POO
Of t . i o n
105.600
0
0
7ft.000
RS.OOO
4 2.000
4 1.*0 0
4 9 . on 0
4H. 0nn
4 H , ft o 0
14.400
16.600
17.300
1 ft . 0 0 0
17.000
20.000
10.000
19.400
1 7 . ft 0 0
fl 1 . 4 0 n
S O . 300
5 4.200
91.500
0 0 , 3 0 (1
9? . P O O
9 ^ , Poo
0 7 , ] on
07.400
5 5 . 7 00
58 . p o o
55.4 m
5 0.400
T-FF
SP4
MG/L
MG/L
0
0
0
0
0
0
0
0
0
0
n
0
0
0
0
n
0
0
0
. P50
0
0
0
4P , 500
. 1 76
. 47ft
0
0
0
0
4ft. 7 0 0
4P . 9 0 0
0
n
55. 600
59.RO0
6^.400
60.000
61.000
65.900
0
0
0
0
.640
.420
-0.020
69.300
uL A < F
n arr
J F M f)
nfi-r
«■■&*•&■» * fl fl
C/ 7 /7?
11/15/71
C/
b/74
HftTCAflfl-ft-n-flflfl
=:/
7/7?
I 1/15/7?
c ,/ H / 7 A
D a TF
t t fl A A f l f l f l A
* /
7/71
1 1 / I 5/ 7" >
C/
R/74
25 .i^o
2 2 . 5 ^n
?5.7^n
K-Cl-n
WG/I.
a a a a a a -a a
. 0 °*
- 0 . nA4
. 0^7
nKFFTHO^F
n. o.
MG/I.
n.O.
^SftT
a a « a a -;t a a
4 # i h h h » « s>
7 .q n o
Q .^ 0 o
7.500
*v0 ? - N
vtr. /l
9 2 . P 5 7
1 0 1 , 1 4 ^
'il.**!
\M3-tv
wti/L
» a A a A- * a a
-n.no?
- n , nn
- n .n n4
t*
v
A A A A A A A A
.1? 0
-n.niO
- 0 . 0 1 fl-
ft.fi.
yn/i_
CA
a.a.
ftQ « jtlt##*
A A AA A A A A
A A A A A A A A
(Vi A
*5 . 7 o t
= 5 . ooo
* 1 ,nno
3 . ?40
? . ^30
a
.
p
on
4 3 . nno
42.900
55.f-.no
-
Ph
FIFLD
^ll
*
a L*
mf ; 0 / L
tn n n n n »»tt
a a a a a a a a
fl.4 0 0
P . 4 4 n
CPMD
SECCHI
fiflo
*#*flAAAA
cm
0
n
P. 400
6 5 0 .0 ^ 'J 1 7 5 . 0 0 0
P .?00
2.390
Tkm
np-P
mg/ l
A A A A A A A A
mt , / L
A A A A A A A A
.5 00
.950
1.-370
mg
CL
/ i.
AAAA A AA A A A A A A A A A
1 4 . S 00
Ift.ROO
1 >1.400
’
T 3 .f>00
no.BOO
^5.40 H
5?. 000
T-P
SI02
MG/L
MG/L
A A A A A A A A
.0 02
. 0 16
. 003
vg
a.a.
72c. 0^0
. 1 15
. 02 7
, 0? 2
3.400
1.1RCI
3.380
SC4
T-FE
/ l
m g / i,
vq
AAAA A A A *
****AAflA
o
0
6 0.4^0
n
.072
.370
i>
I AK F S T A T I O N
n « rr
0 A Tr
**#<*»$*<<•
5/
1 <" ^ ,' 1T T O '
TF"p
c fl- r
n. n.
m ft/ 1
■*■»«*»«##
25 .? n n
2 ] . 2 " fi
2 ?.?''.')
fi.non
o . /* m
P .M 0
2 5 . 3 r' 0
A . 1 <1(1
NC3-NJ
f'fVL
# * « » » » « -i
NO^-M
wr./L
##»#«»»#
7/7?
. n«7
-n.nn?
11/15/7?
-n,!)" 4
-O . f i n i
11/1^/73
e,/ R / 7 4
n
. ' >^ 3
fl
- n » 0 04
0 ATF
4«4««4«#
C / 7/71
11/15/73
c /
R/7A
« <t<m- * ■
»-»«■«■
# « <*j,nt (to * -int# tt •(># * * * * ■
»* w :l
L 8KF
p K F F C H Ci H F F" - P 1 1 ■»
NA
K
fl . A .
Mft/ L
#«#*#»■»*
*#*■&»#■» #
46.6"0
5 5 . fl 0 0
3,?0 0
4 . H fl 0
An.fino
A . ano
n.o.
ai k
ph
qtSAT
F r F(_o
wro/L
#««««»»-»
9 5 .?3>3
9 3. ? 3 3
3.3^0
^ . ■'+0 0
Q7,7?7
« . 4 TO
7 2 . * 19
a.idO
NM3-K
-
CM
FTFLD
*»*#*«*#
tnnnnnnn*
? ,44n
p .560
0
P. ^9d
T X Nj
^G/L
fjq/i
SFCCHI
con
■#**#**##
n
t1
n
n
n
6 5 0- 0 0 0
65 0 . 0 fin
7 2 P . fl 0 n
OP-P
m<3/L
SIO?
WG/L
T-P
MG/L
«#««#««#
. 0?' )
0 . n 1o
1 . too
.060
0
0
. 0 5 0
CA
1 . *>50
. n 11
.046
.030
fl
0
.fin?
• fl 0 6
Wft
T- ff:
SC A
M(VL
0
4.060
. n ?H
CL
3 .H 0 0
.640
A.A.
A.A,
»««»#«#»
0»o««e«4
4 3 . 4 00
1A . Q0 0
7P.OOO
0
0
4 1» ? n 0
n
5 5. *00
l^-. noo
7 9 . *00
n
o
5 *3 • 0 n 0
. ( 17( 1
*#*»«##«
o
1P , 4 0 0
MG/I.
WQ/L
■»***#«#«
#*#»##«■«
n
q^.Arm
(1
.470
4
LflKf
L'^k'F
T F WP
C^-r
« « « * ft4 « «
7/71
P's. DAO
n / i4 / 7 1
?? . > 5 0
s/
q/
f l / 74
n atf
*innnnnnj
s/ 7/71
n / l i / 7T
=;/ p / 7 4
n^TP
q/
2 f>. 9 n 0
i*. C l * ^
M ri/ ].
- n . 0'14
-n,n«4
n. n.
VR/L
«««««»#«
P.O.
*SAT
0««4««4I>
DM
F I FLO
7.400
PB.OQ^
»,T50
10.000
1V4.q43
103.704
P. * 0 0
P.TOO
P . 400
N c 3 - N)
hiM 3 - N
M(VL
MG/L
-n.no?
-n.no4
-0 . 0 0 4
. 1 00
-o.mo
.010
«
T* N
MG/L
.700
1 . 120
1.1*0
ALK
MFO/I.
. P00
1.^30
C C r-'D
sfcchi
F IF L n
cm
«»##***#
7
?.Q30
OP - P
M«/L
4 7 0 . 0«0
7 1 q.ooo
t- p
MG/ L
■tn»»#«■* a «
««(!««##»
.002
. 004
. 002
.066
.0?6
. 0?5
NA
K
CA
*r.
Cl.
i.A.
«#*#*«■**
M^/L
A. a.
#«#«««««
i.ft.
« « « « » « tt-tt
Mrt/1.
* * # 0 * 0 *#
MG/L
*#■»«»*##
7/71
11/T4/73
t;/ P /74
- pl1
11 S U R F A C E
S T fl T T H K
0a
0 K F F C h d MF F
3Q.nno
? 7 . i"10 0
T. 0<50
4.SO0
SC4
3 4 •0 0 n
^ 3 . nno
3 6 . OOO
SIO?
«fi/L
6.000
2.050
4.970
T-FE
*52.'sflfi
ip.poo
qq.noo
.0
30.100
S6.Anc
1" . 7 ^ 0
I * . 4 no
69.300
0 3 .300
0
5 5 . aoo
VG/L
**•**##■&
n
.164
.480
a
LfiKE
n * tf
S /
7 / 7 7
1 1/14/71
1 1/ 1 4 / 7 1
q/ * / 7 4
ru Tr
TF^P
QG-r
#«*#*■»**
#««#««#«
? A , flO!)
7.100
? 1 .sro
22,500
p .p n o
1 ? , nno
04 ,G?4
1 1 2 .son
n7,pii
24.700
' *.500
77.IM
\C?-n
VR/I_
##»♦»###
5 / 7 /7 T
11/14/73
11/14/71
S/ 8/74
D a tf
nr4
-o . o o4
o
- 'I. 0^4
.
NA
fl . A ,
<=:/
7 / 7 1
1 1 / 1 4 /73
1 1/ ) t /71
<;/
fl/74
n.n .
n. O.
9SAT
*G/L
NC2-N
wr-/L
4v«tiattoe«
-o . n n ?
OOttOtteU
Tkn
«#*«««»«
.040
1 ,PO0
1.120
«#«#»»##
1 .P 7 0
.opo
5 3 . * 0 f;
1 3 . 4 ^
0
r.
55.*on
-
P M
^\LK
W F U /L
« « # « # #«#
0
1 .440
1.370
0
?. P4 n
]p . 1 00
n .r o o
o
1Q.400
SECCHI
CCMP
F I FLO
###«*#»*
CM
#«#»#««<»
470.00Q
4 7 0 . OOO
n
n
n
7 ? n . 000
0
S 102
T-P
MG/L
««»#«««*
.071
- 0.002
.002
o
.002
n.
A .A .
«
3 .onn
nr?-P
Mq/l.
**#«#**«*
CA
A. A.
4.100
» .*oo
fl . A O O
n.700
P . 700
M( 5/ l
K
yr: /L
t g .n n o
Firm
a « 0 #tt<*aa
MG/L
. n»9
n
- 0 .010
i
PM
Nu3-(>
-r>. 004
0
-0.004
«;7,?nil
?a.oro
O k FE<"Ho H F F
Mrt/l.
Pie,. O 0 O
77.000
0
p a .^oo
. mo
o
.n?4
SC4
MG/L
5 . POO
2.250
n
4.4^0
T-FF
i^G/L
««»•««««
MG/L
(J
0
n
6 0,100
0
• 3 ?.*
0
.40 0
.
*
A *" F
s T f . T T 0 r.
D a TP’
1?
fttt irftft■
!■ftIt
1 1 / 1 5 / 7 1
S /
H / 7 4
n^rr
<=,/ 7 / 7 1
1 1/ i S /7 1
S / H/74
M P /L
* #*■»#»**
*SAT
ftft.uftft«ftft
7.400
9 0 , ?44
*.350
P9.773
« . noo
p.inn
p . 9nn
«#««»««*
. pi 3
.??G
. 04fl
-fi. no?
- n . 0 fl4
-n . 0 0 4
NA
ftftftftftftftft
A . A.
ftft # « # # « »
=;/ 7 / 7 i
1 1 /I 5 / 7 1
^ / « /7 4
n.O.
NC3-*
m ^ / i,
flo ■»■»*#•»*
atf
n
n.n.
7 . 9 0 0
P7.?nn
5 1 .5 0 A
ftn . f)0 0
6 0 . 0 n n
O k' ^ E C h O P F F - P I
i
«
S 1 1 D F A <~ F
TF^p
C^-r
7/7^
LAKE
NCP-K
MP/L
K
MG/L.
ftftftftftftftft
1 .ftftfl
4 .150
c.ftoo
1 0M.R77
N’
Ml-t-K
M (V/1.
PH
Firm
• 0?0
Tk n
M G/L
CM
F I E L D
««««*#««
?.72o
p.Hiin
3.000
O R - P
m t ,/L
»«ftftftftftft
.003
. 024
1.400
1 . 060
1 .52 0
CA
yn
A . A.
ftftftftft# ftft
A, A.
.002
n
710.0^0
7?7 . oon
5 7 . 0 0 0
9 0 . 0 0 0
2 R .O O O
sro?
T - P
VR/L
MG/1,
ftft f t f t f t f t f t f t
««#«««««
,044
. 043
. 0?*
4.600
7.410
6.360
T-EF
5C 4
CL
MG/ I .
»#*«*##»
MG/L
ftftflftft*ft«
. non
■
o
n
0
'114
>49 0
lft.
ra
4 8 . 1 0 (1
1P .7 0 0
P 7 .
=;?. ? o o
I P . 400
Q4 . 4 0 0
4 7 . POO
S E C C H I
c r md
ftftfttte ftftft
»*«»■»«*«
. f)ln
-0,010
ALK
WFO/L
100
59,flnn
WG/L
« «*»ft«ftft
ti<nnt#(nnnt*## V o «■»<>•»<»■(>
LAKF
«
i.flyr s T A T r n h
TF
e;
/
7 / 7 7
vG/i
« 0
7 , -4 o n
cl . 5fto
Pl.srn
7.?oo
7.300
l
?, \
? . ? o n
q /.« /
D
a
7A
T^
. c o n
24 . a n o
ft. ft o o
N0?-N
M^/L
NC3-N
Mp/I.
#**<>#«•»#
c /
7 / 7 7
.(119
. i n a
n
l l / i S / ? 7
o
=;/
M/74
. nP 7
O a TF
/
0
7 00 .0 0 0
8?.355
« . 000
0
7 0 0 . onn
P2.
77.^47
P . 000
P. ftoo
f>
710.00 0
730.0^0
3 —n
- Tk m
X
**#*#»*#
7.700
4 • ? ft 0
58.000
^
o
H /76
, fl A 0
-0.010
o
i)
5 f» . 0 0 0.
o
n
A . 5 0 ft
tt-tutfl«■ft« »
1.100
.740
o
o
1 .A A Q
Mr,
A.A.
«###»«#«
#*#.» ■»*■»#
Sft.ftO'l
- p
M G / L
CA
A.A.
49.000
4 7 • = o fj
(!
0
3."20
p p
WG/L
.0 7 0
MG/L
,
# ov■
&e #•»■»
n
Mi
1 1 / I c / 71
1 T / I =5/ 77
S
n
-0.004
A.A.
,<;/ 7 / 7 7
11/1^/77
P . A PO
?.°10
MG/L
- 0 . n o ?
CM
4«t««««4
P . 300
H.000
m p
- n . fi o 4
1 1 / 1 s / 7 7
«FH/L
qr.,?44
P1. » 1H
«■!>«#•»*#»
l i / i S / 7 7
SECCHT
CnMO
F IF 1,0
alk
#*■»■«■*■»■»#
«•#•»•!*»■»«■#
^
pm
FIR_H
n.o.
<*SAT
n.o.
l i / i s /77
11/15/77
1 / 1 5 / 7 7
#
wottc v
T F k"P
CG-r
*»##««**
OKFF-THortF F ~ P l l
.OOP
.023
n
o
. n!? 3
m g
Cl
/1.
P ft . n o n
Pft. 7 0 0
n
0
p ■
■0
iQ.AOfi
TA.400
0
0
0
0
0
SI02
MG/L
T - p
M G/L
**»«.##■»■»
«a*«4#«e
.04ft
.019
o
o
.O^O
. ft0 0
7.410
0
0
ft. P5n
4
T-FF
SC 4
W G/L
MG/L
<h h h h h j .»#
****«*#*
1 7 . 0 no
1P , * 0 0
# e «-» 4 « # «
n
0
n
0
SQ.ftflO
• 214
0
0
.330
LT)
"=£
OO V b b
Out
(J 0 I * I I T
(j
OOu'UUt
0
«*»■»»###
t/9 «
VJS
id-i
'!/yw
1^
0 u b *
L
One*
1
lb
o u t '71
O b i ■ril
fJUa'gSi
* # » * # * * *
» # * » # * » *
*V*sf
■
-'rt
* v ’V
vo
0 0^«+/
0 U l>* 9 3
Vi/ 6 / ^
U 9 tf*t
U J u *V5
CiL/vL/ll
OSa [ * V
lj 0 9 * U ■*
L i / i
iHKHHHHHf
1/MW
X
/ b
lUtHUflftt*
*tf*P
VN
J i J (J
0 Ui • 9
Vb 0 *
1 0 U*
09b* I
u Iu•
V O O ’ O-
HU L*
V U b /!=
Ofefe'E
00^*6
UVO*
511*
90U*
£ tu *
OtU*L
0 Ub * I
ibU*
UdU*
V ti U * U -
t ti 0 *
t i / V I / I I
illu’O-
It d '
# « # « » » » «
» » # * * * «■#
l/i)U
d” i
*1/9*
£015'
» # # ♦ » # # *
I/W m
aa « a o t»* #
t/£jrt
» # » # » « * #
1 / £J *
w
d - a u
- C h N
»»««'»»»#
*l/^ rt
#•»■
»■
Ll/ L /b
##*##»**
"}/i)fi
N-cON
j i VQ
OOU
Out) *
O O U ’ fc
0 U 1 * rt
VtiC'bti
Utib’ i
U O H ’ Vd
V i / b
U00*22
O O O ’ Ub S
uciia’ i
UUl' tt
L i t * Lt>
U U 9 * d
O o b ’lXI
Li/vL/Ll
00U*6l
<j
08V*E.
0 Lf^ • c*
9iV*U6
UU 9 * i
t i U ^ ’ Vi!
c i / i
« » » « » « « »
»«■*#»*■##
iVSKi
1/yrt
J-yJ
* 0 * U
*L)*Cl
rj k> d i
WO
I HDDJS
U I ^ I J
Qw JD
»
■
>
1 / O ^ H
U T J]
>4 “I V
M( 3
d
JM V1
v
i>«■
•»■
'*'*« * u a-«■<tVr■
»e-<>Kt
,/b
/ b
fttnntit###
Ji.v(i
* -t<«•J> (h m i «#(h h > :nnnnnnxnnnnnt(ntfij(innt
■»
I_ /V*■F
O',
«; T <i t T r \
tt
i"5 o n y
7f “ u
n.n.
n .0.
Mr- / L
¥SAT
l 1/14/77
n?
P.ftnn
p .ft on
DftTf
<=/ 7 / 7 1
11 / ! 4 / 7?
n / 14 / 7 7
11/14/7?
11/14/71
F/ 4/74
0 i\7 F
©#**#<(«<»
Jg
<£
?4.^ 0
M r: / L
tHHHHtflOd
-tHKHHt-tKH*
,?5H
.non
_ a .O0?
-n . n n 4
n
o
0
* P. * n 0 4
• 1? 5
MA
.1 . ft .
*H> (Hi -U-■
>)•i>*)■
6 0 . ! n0
c ? . ^ fi rj
1 i/i4/7?
11/14/7?
n
">
1
c H. nri n
P5 . 7 l 4
WG / L
wf./L
4.14 0
7 . 7 ft 0
0
4 . 7 fl 0
r<
■
I
!l
1.ann
1.020
0
0
0
1. ?P 0
w
r.
^^
9
.
A
9 0
ft2 o . o n o
ft 2 fl • 0 0 0
ft 1 n . o 0 n
S I O?
« « « « » » « »
0
•* o
fi
. n?2
'i
.no 2
Sr 4
MR / L
* «* *
19 . 7 0 n
1^.100
0
1" 1 . non
9 7 . ft0 0
0
p
n
t
9^.400
-f f
*G/L
MG/L
#«t)D644t(
0
0
0
n
p.
la.flon
8.600
3.740
0
n
n
6 . «5 n
. n«?
. 0S2
. M ft
fl.
n
WG / L
M G / L
.nos
0
0
1
fl
n
7 3 0.0^0
«# * « * «« #
.
«««#««#«
0
0
0
6 2 o.no o
T-P
CL
’I
S^
.
M G /L
A
? 9'. 4 n
p
MG/L
n
n
n
- n .ol0
0
n
o
n »- P
. 0 p f;>
■O.I'IO
, q TQ
n
km
#»##*«(>«
. it-tt« # *
1 . H30
0
fl . 7 0 (}
T
CM
■
»fl# ■»«*■&fl.
1.44n
P. 1 no
q. 1 no
97 . 7 ? 7
SECCHI
# ««* # »* #
f l . l ' H
9 7 . 7 ? 7
CA
A .A.
K
Cr mo
3,4(1 0
D . i nO
u r
M H '3- N
K'C?-N
V r, / L
c/ 7 / 7?
11/14/77
1i / I4/71
■ ■=;/ 0 / 7 4
7,?nn
NC?-K
n
n
0
.c
95 • 4S5
9 7 . 7 p 7
P. 400
p . 6 nfl
s / q/74
•»
F IFLO
« fl<H> e « ^
9 0
1•Sn 1
P~\ . R o n
2 1 . 5 n r)
P l i
PH
7 . Ton
11 /1 4 /7 1
1 1 / 14 / 7 7
l l / l 4/7-\
-
F T Fl.n
flftfl.->1»iHt -tt
7/77
C K F f f M n R F F
oM
C R .r
«»«»###«
c, /
t
L AK F
. ft I . 1 ^ 0
#a
a
#o
4
n
•936
0
■ n
0
•■ft 0 0
4
*
LA*F
station
n.o.
WR/L
OfHHHHHKt
•
o
•
TFMP
CG-C
7/71
2 c . r on
p
11 / 1 4 / 7 1
s / 9 / 7*
2 ? . ono
24 . 90n
. 300
f l . ao n
S/
D aTP
» * #*
5 /
11
N: C 3 - N
wp/l.
.ono
p
9*3.? 3 «
94.114
1 O i?.^q l
. f i l l
- 0 . 0 0 ?
. 1 * 7
- n , o n
- 0 . 0 r* 4
Mi
0? Tf
A . A .
4
- n . 004
K
M G /L
4>
7/i~ >
11/1
s/ 9 /
74
(55 t ^ r
c^.rnn
3 7 . n0 n
P i]
*
.
^ . Q on
4 . 04 n
<30 0
?.
ALK
SECCHI
^FO/L
«»»#«■**#
« .4S0
3.0H A
o
3 . ono
«.409
? . * 00
?. 970
* >4 o . On o
7 3 1 . 00 D
■»
<5/74
-
PH
FTFLn
«««»»««»
TKN
MG/L
WG/ I
7 / 7 1
=;/
TtSAT
MH j - K -
NO?-N
yP/L
/ 1 4 / 7 1
e /
O k F F f'H O W F f
SURFACE
c
O.A T r
16
L * * F
it*******#****##*#*#**#**#*#*####
OP-P
MR/L
CCMD
CM
f IF L D
##««■#■***
19.000
3ft. 0 0 0
54.000
S 102
MG/L
T-P
MG/L
***«#■*»*
*#«#■«■###
. 1 3 0
1.MOO
. 0 0 5
*112
7 . 3 0 0
• 4 4 B
. 7 7 0
. 0 1 0
. 039
4 . 9 8 0
1. 7 3 0
. 0 0 3
. 0 1 9
3 . A 7 0
- o . m
n
CA
ft . A .
* * u-tt e « <n t
S3.R0O
4 4 . ft 0 0
Mr ;
A .
f\ .
jp .n o
17.SOO
1 ^ , ft n 0
SCA
CL
M r;/1.
000
79.rs00
0 r . ft 0 n
QO .
m g
T - K F
W G /L
# « » * # « « #
/ l
0
0
r
63 . 1 nn
.30
0
3=in
L
i
L a wF
C T A T T ON
i
4
n.n.
#####»##
HG-r
********
=;/ 7 / 7 1
1 1/ 1i / 7 ?
2*.2pp
2 1 • 7 n r>
11/14/7?
1 1 / 14 / 7 ?
9/7&
fUTF
2 1 .
7 ftp
?2.nnn
2 2 . f'P 0
24.3"P
ivC 3 - *
MP/L
********
7.6no
P.POO
fl. ? n o
fl . ? fl 0
fl. ? o n
7.?00
^ / 7 /7 ?
11/14/7?
11/ 1 4 /7?
* * * * * * * *
. D??
.16 7
n
n / ii/ 7 ?
11/14/7?
n;/
9/74
T a TF
c/
7
/
7
i
-n.no?
-P .004
r
0
-0.004
c f , t c ( i , :i
* * * * * * * *
? .
9
?5.nno
? . <3S0
n
0
11/14/7?
11/14/7?
0
n
n
p
9/74
F I Fl.0
********
it*##** **
p ll
»
4 .c n 0
com
ALK
wFO/L
* * * * * * * *
seccH 1
n
fiflh
* * * * * * * *
« 9 . 4 12
9 3 . 1 P?
"54. *»1 rt
n , ?5<i
,200
n
fl.
1 on
fesn.of'n
«
100
94 . ■
>1 H
fl . 1 0 0
fl. 1 0 0
>on
0
0
p
,n2 n
94*
■> 1 »
fli . 7 P 6
.
A.^00
T k
M
» n /i
* * * * * * * *
********
OR-P
m r /L
«****»#*
2 . <100
1 .?A0
. no3
. 0 1P
0
0
0
0
n
0
n
- 0.010
1.^5P
.m o
- 0.010
. cr n,
4 .3
. ?
00
0
0
n
S 6 . f<n u
********
^<?/L
******#■ &
10.700
16.900
0
9 1 .POP
0
p
0
0
qq. f-on
? f>. £,0 0
79 .POO
0
fl
o
n
n
6 5 (1 . OPO
n
n
6 5 0 . 0"0
736 . 0" 0
T-P
MG/L
********
.09*
. 0?fl
0
0
0
.021
. P02
CL
A .A ,
CM
********
6 =10 . 0^0
n
n
^ r,
4. A.
********
? p
1 1 / l i / 7 ?
e; /
<*SAT
CA
WP/L
* * * * * * * *
PM
fl
k
\ . A.
11/14/7?
A58
-0.004
na
* * * * * * * *
* * * * * * * *
n
n
n .0 .
fsjM 3 —NMG/1
NO?-^
y > r , / 1.
* * * * * * * *
-
POTTC* '
n - tf
11/14/7?
OK’flHr' HOWF' e
ake
S I 02
VG/L
»««««#«»
7.300
5*060
P
n
0
3 . 960
T- Ff
SC4
N-G/L
MG/L
** * * * * * *
0
0
0
0
0
* ? . ?oo
* * * * * * * *
n
.476
0
P
0
, R4 0
« « tte tf#
«
a*F
okffchorff
TFMP
n.n.
n.o.
PM
Cfi-C
v r v L
» S A T
FIFLH
# » » « # « »»
- Pn
7 / 7 1
11/1 4 /7 T
5 / 1 n /74
2 5 , inn
21.7 r0
3 5 . fro o
n a tp
* * -It -9. * « # ■»
7/7*1
1 1 / 1 4 / 7 ?
P .200
p . ono
p . 6oo
9 7 . A 1g
* . 4 5 0
90■
« . l no
2. 7on
P
? . S 4 0
C / 1 n / 7 4
n m r
1 04. P7R
Kiu3-K
M G / I
.02 0
-n.no?
- o . 004
- 0 . 0 1 0
. 0 ^
- n . no4
-
N\
# # # # * # # #
55.7*o
5 9 . nno
5 7 . nn 0
.
4
0
0
T k m
MG/ I .
K
M p /L
•tnnnf ■
»■
!>■
»#
?i«340
4.190
4 .6 o 0
0.010
1 .9 0 0
1 . l ^
1 .6 4 0
CA
MR
A . A.
A . A.
53.^00
4 3 » 1 no
5 3 . A no
. 3.
«
nR-P
m r
/L
« # « « # « <nt
Io . 00
17. 10 0
1P , A n 0
.0 0 3
. n 14
-o.no2
CL
MG/L
* ptt* ■
!>■»■»#
^1 . 000
P 1. P 0 0
*92.600
SECCHI
c rM n
C *
FiFi.n
n o rt
# ** # ■ » « *#
***■»•»«*«
.1« 0
fl , fl .
S/ 7/73
n / 1 4 / 73 ■
<?/in/7i
MR/L
»■&■»«■- t n n n *
. ^ 3
O/L
fl-fl« #tt« O#
N C ? - N!
wn/|
ALK
m f
int
<i-tj
* /
LfiKf
s t at T0*
T a. T F
5 /
It•»« -!t# -IH>«
3 7 . ooo
37. non
3 8 . onn
0
6 0 0 . nno
7 n . n no
t
SIO?
-p
MG/L
m
G /L
»*#<*
.036
6 . ^ 0 0
5.620
6.420
. 049
.034
SC 4
MG/L
« » # « » # « «
0
0
62.000
t
-f e
/ L
* « « « « « # «
m g
0
*606
. 420
>
tn
to
« <;■
<*■
&
*
n^Tf
tf ?'P
n.n.
p,c-/1
r/i-r
*;/
7 / 7 ?
2
4,gr:n
p
•»» -fi-1><t«■-r,■
»•»tt -t>tM> -o»■
!>
- Pll
#
■{HHKHt-tt «■#«»»»-»#■»##»*#**###«##*»#<
n . 0.
<*SAT
««««*»# 44
2 1 . ciCO
Q . ? o n
1 1 / 1 4 / 7 ?
2 1 . 7 ^ 0
fj.ion
2 1 . 7 0 0
7 . 9 p n
P 9 . 773
2 S.<inri
h .? o n
*-Q?-N
Mr;/L
**»»*»#■»
7/7 ^
11/14/7?
11/14/7?
11/14/7?
17/14/7?
< = ./
S / 1n / 74
n » Tr-
o
n
<i
.040
1 7 / 1 4 /7 ?
1i / i 4 / 7 ?
11/14/7?
11/ 14/7
?
C/ir/7/.
n
o
o
- f' . A 0 4
fv*
7/7?
K
MR/l.
*##»#«##
5 5 . HO"
?.^?n
sp.nrn
4 .1^ n
r
'?
o
C 7 .m 'r
NH3MG/L
. nio
-n.no?
-n.nri4
A,A.
c; /
1 0 1 •? ? 0
«. l no
p. 1 00
p. 1 no
p . 7 00
. n?8
n
n
CA
A. A.
«#»**»»*
0
0
?>. 9^0
TKM
nR-P
MR/I.
*
-tt#«■
FIFLD
CM
««««««««
n
SI0P
«G/L
T-P
MG/L
#<nt-mnnn*
.002
.049
1 . ?<S0
. 0 4^i
6.700
5.3*0
f)
n
n
n
n
o
n
.0? 7
f> • 4 4 n
0
0
) .400
.no3
CL
wr.
A .A .
M
c 1 . 4
00
1 p . ==no
4 4 . ?
00
o
17.poo
r
n
m g
-f f
/l
onn
n
n
? . » o n
• Rlfl
,n3fi
p ? .
n
0
n
n
n
n
0
0
0
0
4 . ciO'1
5 4 . A n n
1P .4 n n
Q ? . ft 0 n
tjp. n r o
p
n
n
t
S04
MG/|.
/L
0
0
n
0
0
0
0
0
0
0
68 o •0 n o
0 »0n0
6 fl0 . 0" 0
6 f?o. ono
7 1 0 . ono
. 0 lfe
t ?f) 0
0
.010
0
MG/L
#«**»#*#
, i.i4 4
. l ftF
**#*♦♦#«« # « # « # « «
wpo/L
o tnnn* <*<*<*
2 . 7 0 0
?1 .7 nn
VC1-N
wr;/i_
F 1 F !_n
5ECCM1
cc^n
? . n oo
4 / 7 ?
^ A Tr
a LK
p. 1 00
11/1 4 / 7 ?
t;/ 1 n / 7 4
PH
P .400
l i / i
»*• 0 . 0 0
D k F E ^ H O h FF
C5 * 5 . ? ? H
Qn.opQ
93. 1 P 2
92« 045
1 1 / 1 4 / 7 ?
A60
. " 0 0
-u-iHi
LftKF
0
0
n
n
t
# # * # # « » * # « * * * » » # # # # # # # « # # ■ » * # # # # *
*
j AK F
^
T Aj T0 N
O a TT
1f
T F *-i P
O .O .
n.o.
r . n - r
wr/t
* S A T
D a -TT
?1 .qno
2 H . 5 ri n
• rvC3-n
MK/L
H . 300
11 .non
\C?-N
m p
/1
» # # * » * * #
11/14/71
=;/ 1 0/7 4
D a Tf
1 1 / t 4 /7 1
c / 1 n / 7 i
.1 B 1
.nlfl
NA
A. A.
O K F F C H O H F F
-
P l i
o
:dF A C F
■
»•»■
!»-ii-* -T,
1 1 /■
>4 / 7 T
S /10/74
LAKE
-fl, 0 04
- n . 0 04
K
mivl
Q4
Pm
F I F L 0
1R
14 1 . n?^
!V'-<3-rv
M G /L
e e « * « tt« »
- o .n io
-o.m o
al
T km
* * # * * # # «
1.110
1 .71 0
cr^n
M P O /L
*■!>«»■»•*■»#
n , i no
p . * no
MG/I.
K
2 . ^7 o
i.ono
A . A .
A, A.
« « » » « « « «
» « 4J#■#» tf«
**#»*<!■**
co . f,mi
4 , 1 RO
4 2 . 0 0 0
'i. 7 p n
5 4 *
t,
0 0
l^.qnrj
1 p . <,o o
67n. nno
720.000
T - P
/L
MG/ ! .
«##«»■»»*
4 1 . non
4 0 .n()n
S T 0 2
MG/L
Q
**■»■##>*«#
« # # * » # « #
. 01 3
-0 . 0 0 2
. 041
. 0 ?B
5.260
6.000
* * * #
CL
CA
F I E L D
*•»-tm ■
&*# ■
»
O P -P
mg
secchi
5C4
T -F E
MG/1.
« » * « « « « «
M G /L
»4M» « « # « { >
M G /L
* » * * * # « *
A3. 4 Of ]
9 3 . * o0
0
.407
b 0 . 5 n0
. 33 0
LAKF
( V F f C n O ^ F F - “ll
#
fl'tit(mnnnnt(HnnK4(nnnnns«#it<nt*int(nt
L A k F ^TflTTOK
n.--Tr
n / I 4/71
1 1/ l«/7i
11/14/7?
11/14/71
V10/7A
D
a
TFfp
f’
G-r
tt-Beti-ita-av
11/14/71
11/14/71
11/1 4 / 7 1
1 1 / 1 4 /7->
^/1 n /7 4
0 *\T F
) 1/ I 4 / 7 1
11/14/71
11/14/71
11/ 14 / 71
c' / i fl/7 4
n
s.lnn
0 .? 0 0
n.Tno
a./* no
* . HO0
k
I*-/I.
so#(nnnnt
,|C'
-i
. nng
tvA
a .A .
**#•»# -;>•»'>
S H , o f>n
(I
n
I!
c^ .p n i
P.O.
n /l
n.n.
pw
f S A T
alk
F i n . n
ctmd
M F n /L
secchi
F I Ft n
ci*
#«"»'»«»»'»
?1 . S o n
2 ! . 5 f*n
2]. Hf»r,
2 I . f*" ^
2S,?r.i
TC
##■»#«■»#»
A62
' W- h o t TOM
C ^ —K
Vr,/L
#»#«#«««
- n . nr)4
n
ft
n
-fl , o n / (
94.ilH
9 3 . is; ?
94.118
fl-. i o n
p . i no
p.7no
N 3 —^
4 J fl n
n
fj
n
4 .* n n
?_.h 5n
fl.ino
. inn
9 5 . 4 r?5
nr.OR?
3.
TtfM
f‘ G / L
non
n
670.0*0
67n.ono
n
n
n
6 7 0 . ono
0
n
6 7 n . nno
7?o.0oo
o
n
OR- P
MG/L
T-P
m r/L
«#««««««
SIC?
*G/L
M G/L
«#««««»«
«4>'«#««W0
-n.njo
0
,740
0
0
0
n
o
p
q
n
.0Q2
o
.016
n
6.400
fi
-n.oiO
K
Vrt/L
#«#««###
p
a
1. . i 6 C
CA
wr,
. A .
A . A ,
»4W
4 4 . P n fi
.oi4
ct.
n
S04
M r,/| :
T- FE
MG/j
'
•<» ft
MG^L
#-»««««««
o
,«16
o
i,
n
o
n
f
0
o
n
n
0
o
n
o
p
■^4.4 00
ip. 000
5 . non
.044
n
f'
IP.in/;
«4.°00
Ql.^QO
6 1 ,^ n 0
.?60
I
APPENDIX B
LAKE OKEECHOBEE WATER CHEMISTRY DATA
INFLOW AND OUTFLOW STATIONS
All results in mg/l except where noted
0
indicates data missing
indicates results less than
quoted limits of sensitivity
PUMP S T A T I ON ?
DATE
5/ 7/73
5/14/7 3
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/7 3
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7/2 3/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/14/73
11/26/73
12/12/73
12/17/73
1/ 2/74
1/ 3 0 / 7 4
2/28/74
3/21/74
5/13/74
5/28/74
HTLLSBOSO ANQ N . N . R .
T-P
MG/L
.023
.030
.030
.110
. 0 9C
.080
.130
.130
. 180
.280
.260
.230
.170
.120
.291
. 146
.122
.116
. 1 15
.138
.138
.500
.082
.064
.130
.054
8.070
.058
.080
. 046
.208
.110
.070
.060
.04S
.049
OP-P
MG/L
-0.002
-0 . 0 0 2
.009
.013
.004
.012
.080
.100
.124
.212
.168
0
.114
.066
.300
.108
.098
.096
.081
. 103
.097
.396
.022
.060
.024
-0.002
.040
.026
.010
0
.317
. 070
.010
.030
.013
-0.002
TKN
MG/L
1 .500
1.160
1 .470
1.730
P . 080
2.010
4.560
4.140
2.100
3.200
2.850
5.960
0
5.056
7.430
4.2*0
3.800
4.760
4.840
3.070
6.800
8.320
2.020
2.230
6.560
1 .580
1.560
2.950
1 .670
2.070
4.340
1 .620
1.060
1.340
1.150
1 .350
NH3 -N
MG/L
* tf« *5-iHl-t
.040
.050
, 080
.050
.280
.220
0
0 .
. 460
.960
.650
0
1 . I 30
.859
1 .392
.620
1 .092
.770
.220
.370
.520
1 ,260
. 264
.335
.416
. 04Q
.120
.030
.070
.180
1 .040
. 100
.020
. 040
.129
.09*
N03-N
MG/L
N02-N
MG/L
SI02
MG/L
*»*»*»«■■»
tnnntfl###
****■&■&■«:-■&
0
• 03b
.047
-0.002
-0 . 0 0 2
-0.002
.014
.047
.024
.200
.140
.179
-0.008
.155
.260
.031
.081
-0.008
.099
.053
. 064
.190
.127
.058
.149
.108
.034
-0.004
-0.004
*0.010
-0 . 0 0 4
6.200
6.360
7.400
8 . 700
10.400
13.700
17.970
23.000
22.500
19.800
19.70 0
0
22.880
22.880
27.480
? 5 .988
26.800
23.920
19.120
17.200
21 . 2 0 0
28.120
21.440
19.760
25.200
10 . 6 7 0
8.000
7.900
6.000
8.900
12.60 0
10.000
5.800
6.500
7.280
6.800
.121
.56V
.353
.200
.260
2 . 150
.604
1 .515
10 . 6 0 0
2.159
1 .357
•271
1.413
.311
.312
.426
.218
.331
.555
.363
.118
.020
.034
.050
.268
.150
.289
. 34d
.200
-0.010
.040
.131
.009
-0.010
.006
1 .107
.010
-0 . OLO
-0.010
.006
-0.004
PUMP
STATION
2
HILLSBORO
A NO
N.N.R.
C
1
DATE
K
MG/L
ee^-innte#
NA
A.A.
« « ■* # * « * 0
CA
A . A.
» » * » # ■» » *
MG
A.A.
CL
MG/L
5/ 7/73
5/14/73
5/21/73
5/29/7 3
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7-/23/73
7/30/73
fl/ 6 / 7 3
8/13/73
8/20/73
4.460
4.020
4.030
6.460
5.060
4 .840
6.030
5.900
9.350
9.880
6.200
7.240
7.500
5.810
8.920
6.980
60.000
56.500
60.600
66.800
72.800
77.300
86.400
106.000
128.000
135.000
123.000
98.000
96.000
96.500
152.000
112.000
49,.300
4 9 , , 100
53,.500
56..600
5^,.200
45..200
118,. 0 0 0
130,. 0 0 0
104,. 8 0 0
116,.400
93,.000
114.. 4 0 0
1 4 4 ,. 8 0 0
1?P,. 6 0 0
102,.200
110,.400
21.100
17.200
19.100
20.500
23.300
? 5 . 000
38 . 8 0 0
44 . 8 0 0
42.000
43.300
36.900
39.600
50.200
46.600
49.700
43.400
10 2 . 0 0 0
85.900
92.500
106.000
110.000
108.000
127.000
139.000
171.200
171 . 7 0 0
153.400
1 2 0 . 100
141.700
130.800
206.190
150.401
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/7 3
10/15/73
10/23/73
10/29/73
11/14/73
11/26/73
12/12/73
12/17/73
1/ 2 / 7 4
1/30/74
2/28/74
3/21/74
5/13/7 4
5/28/74
6.550
7.480
6.990
6.900
0
0
7.000
0
0
4.600
8.900
4.310
7.200
4.600
7.500
8.800
101.000
130.000
110.000
92.000
9S.000
173.000
123.000
130.000
119.000
65.000
65.000
58.900
62.000
60.000
101.000
75.00,0
61.000
65.000
64.000
64.000
135.. 0 0 0
86,. 6 0 0
1 0 0, . 2 0 0
69..800
75,.50 0
104..000
98,,000
7?,. 0 0 0
77..50 0
50..200
53,.000
44 .. 2 0 0
52..000
53..500
82..000
56..000
5^..000
52.,000
50..0 00
66,,400
49.500
47.300
45.500
61.800
31 . 3 0 0
41.500
40.500
29.000
31.100
20.100
20.000
18.600
22.000
19.500
29.000
21.000
19.000
19.000
19.000
19.000
149.900
170.160
155.300
160 . 0 0 0
147.900
0
158.600
167.400
165.100
99.000
101 . 0 0 0
87.300
103.000
97.000
147.600
]12.000
9 9 . 000
103.000
99.900
102.100
6.200
4.900
0
0
ALK
' M£Q/L
PH
LAB
a«aa«0«a
tttnnm-ts-c.*
2.520
2.440
2.320
2.080
2.880
2.720
2.200
6.800
6.440
7.720
5.710
7.520
8.100
8.060*
8.720
6.670
8.870
7.080
7.580
5.590
6.410
7.800
6.500
5.200
4.990
3.480
3.280
2.670
.240
2.700
*4 . 5 0 0
3.760
1^200
3.020
3.330
3 . 190
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7.820
7.920
8.020
8.090
8.130
0
7.300
0
0
8.000
0
0
0
8.300
8.400
I
STATION
PUMP
date
c
*
2
-a- - o - - «■ «
&
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6 / 1 ] /73
6/18/73
6/25/73
7/ P /1 3
7./ 9 / 7 3
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/7 3
10/15/73
10/23/73
10/29/73
11/14/73
11/26/73
12/12/73
12/17/73
1/30/74
2/28/74
3/21/74
5/13/74
5/28/74
3
MI AMI
T-P
MG/L
ti« O t i ■
>O tfit
.014
. 020
.010
.030
.030
.030
.030
.100
.095
.142
.120
.130
.270
.092
.095
.057
.057
.070
.096
.089
.505
.094
.042
.030
. 0 37
. 04?
.090
.035
1 .120
.026
.040
.050
.060
.021
. 0 24
CANAL
TKN
MG/L
OP-P
MG/L
•cj-
a- 1
-» *
t
NH3-N
MG/L
-a- ^
-0.001
-0.002
.002
.004
.002
.006
-0.002
.070
.048
. 308
. 090
.071
.117
.055
.089
.037
.038
.073
.076
.058
. 0 33
.011
-0.002
0
-0.002
-0.002
.030
-0.002
.880
. 0 19
.0*0
.010
.030
-0.002
. 0 17
1.500
1 .950
1.410
1.440
1.5*0
1 .490
2.020
3.980
?.9?0
3.000
3.200
2.850
-3.000
4.096
2.870
2.1*0
2.800
2.630
2.790
1.830
5.800
4.280
1 .860
1 .840
2.7*0
1.710
1.570
2.450
1.360
2.440
1.460
1 . 160
1 .34 0
1 .270
1 .490
. 050
-0.010
. 040
.050
.030
.020
.110
.750
.330
. *20
. 370
0
.800
.655
.131
.291
.544
. 1 30
. 150
.380
.520
.231
.092
.037
.273
.021
,090
-0.010
.120
. 1 0.0
.040
.080
. 040
.107
.085
M0 3 -N
MG/L
tuttitnfj
.002
.018
.014
-0 -0 0 8
. 007
.135
.360
.400
1 .803
1.318
3.558
6.962
5.605
1 .483
1.660
1.022
2.289
1 .470
. 546
.251
.608
.285
.218
.028
.104
. 0 10
.060
.036
.630
.252
.020
.010
.020
.009
. 0 04
N02-N
MG/L
-0.002
-0.002
-0.00?
-0 . 0 0 4
-0.004
.005
. 040
-0.004
.387
.010
.172
. 138
.195.
.142
-0.008
.050
. 141
. 149
.050
.058
.064
.071
. 041
.007
.020
-0. 004
-0.010
-0.004
-0.010
1 .021
-0.010
-0.010
-0.010
-0.004
-0.004
SI02
/l
mg
6.700
4.500
5 . 680
6.500
8 .400
6.300
11 . * 0 0
23.000
22*100
24.900
17.500
14.200
23.920
16.280
19.000
20.924
15.900
15.630
14.590
21 . 6 0 0
18.000
16.600
16.500
12.330
14.380
10.530
6.500
8.610
700
10.200
6.000
5.500
6.000
5.110
7.020
t
03
U>
PUM P
STATION
3
MI AMI
DATE
K
MCi/L
£-* *-&««««
*«■■&*****
5/ 7/73
5/14/73
5/21/73
5/29/7 3
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ ?/73
7? 9 / 7 3
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ A/73
10/15/73
10/23/73
10/29/73
11/14/73
11/26/73
12/12/73
12/17/73
1/30/74
2/28/74
3/21/74
5/13/74
5/28/74
4.450
4.420
4.000
5.810
4.270
4.300
4.600
5.370
6.720
7.340
5.610
5.120
7.800
5.020
5.860
5.900
5.850
5.400
5.920
6.300
0
0
5.700
0
0
4.400
8.000
4.670
8.400
5.300
7.200
6.200
6.000
0
0
CANAL
NA
A . A.
CA
A. A.
Mr,
A*A.
CL
MG/L
ALK
MFQ/L
20.600
18.600
18.800
17.000
17.800
19.300
23.600
43.900
46.400
47.50 0
40.500
35.600
43.800
37.800
31 . 4 0 0
35.000
34.500
27.300
26.200
55.600
28.100
19.100
2R.300
22.200
23.900
12.600
19.000
18.900
8.100
21.000
18.000
19.000
18.000
22.400
18.600
104.000
94.600
92.700
96.000
97.000
92.000
115.000
151.000
152^000
2.540
2.020
1 .770
1 .410
1.700
2.000
3 . 140
6.260
6.630
165.600
124.800
102.500
145.400
110.720
121.470
111 . 2 0 0
118.200
114.570
93.600
133.000
113.600
115.300
118.500
98.700
109.800
98.000
98.000
91 . 8 0 0
70.000
106.100
92.000
99.000
101.000
97.100
105.600
7.410
6.410
5.640
6.970*
6.560
5.460
5.070
6.850
5.040
4.520
5.470
5 . 180
4.440
4.610
3.440
3.590
3.360
3 . 120
3.640
.400
13.00 0
3.400
3 -0 4 0
2. 840
2.410
1 .990
PH
LAR
-fr* «■
62.700
62.200
59.400
59.300
62.900
62.400
77.500
116.000
1 15.000
130.000
101.000
74.500
100.000
75.700
81.000
90.000
90.000
75.500
64.600
94.000
71.000
67.000
82.000
69.000
76.900
62.000
60.000
60.700
36.000
71 . 0 0 0
6 0 . 0 (\0
61 . 0 0 0
62.000
64.000
67.000
48.200
40 . 5 0 0
39.500
53.200
3 2 . 100
36.000
5 * . 100
129.000
113.000
122.800
111.000
12*.000
130.000
133.400
12^.200
88.200
132.500
84.500
6*.900
78.200
77 . 0 0 0
57.100
79.000
S9.800
66.50 0
51 . 3 0 0
52.000
46.200
27.000
c;8 . 0 0 0
51.000
.000
50.000
39.000
32.800
0
0
0
0
0
0
0
OT
0
0
0
0
0
0
0
0
0
0
0
0
0
8.020
ft. 2 0 0
8.150
8 . 180
8.220
0
8.200
0
0
0
0
0
8.300
8.400
1
S-77
DATE
C&LO0S&^6TCHfE
i
T-P
MG/L
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7/23/73
7'/ 3 0 / 7 3
8/ 6/73
8/13/73
8/20/73
.035
. 04Q
.030
.060
.050
.030
.020
.050
.047
.055
.080
.060
.150
.165
.104
.134
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
13/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1/29/74
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
6/24/74
.163
. 1 05
. 114
.120
.144
.175
.175
,084
. 115
. 1 04
.060
.101
.150
.020
.080
.040
.050
.620
.030
.039
. 130
RIVEOR-P
MG/L
TKN
MG/L
a <•* c-£-<■c-if
0 <-e * » a t-*
.002
0
.005
.004
.003
.003
-0.002
-0.002
-0.002
.022
.009
.021
.050
.101
.090
.115
.125
. 095
.090
.083
. 1 18
.137
.096
.072
.079
.067
.040
. 0 18
.030
.002
. 0 10
iO
.010
0
.005
.00 3
.091
1.300
1 . 370
1.340
1 .640
2 . 140
1 .330
1 .640
1 .470
1.650
2.54 0
1 .750
0
1.770
2.043
1 .850
1.880
1 .770
1 .490
1 .790
1 .300
2.0R0
2.060
1 . 160
1.230
2.820
1 .430
1.640
1 . 8 20
1.560
1.800
1.460
.860
1 .680
2.370
} .530
1 .59 0
2.320
1H3-N
MG / L
■
n-* * v-*
.070
0
-0 . 0 1 0
.020
.020
.020
.020
-0.020
.030
.130
.060
.170
-0 . 0 1 0
.160
.194
.218
.141
. 060
.070
.020
.210
. 140
.061
.117
.133
-0 . 0 1 0
.120
.060
.140
.020
.040
-0.010
.020
0
-0.010
-0 . 0 1 0
.047
N 0 3-M
MG/L
.024
0
.002
-O.OOd
.299
-0 . 0 0 8
-0.008
-0.008
.034
• 012
.029
• 016
• 064
.053
.104
.069
• 179
.183
.183
.259
.169
• 1 6b
.283
.137
. 146
.089
.060
.026
.160
.080
.010
.070
.050
.006
-0.004
-0 . 0 0 4
-0.004
N02 -N
MG/L
-0.002
0
-0.002
-0.004
-0.004
-0.004
-0.004
-0.004
-0.008
-0.008
-0.004
.025
.060
.045'
.071
.025
.035
.016
. 049
.028
.036
. 0 26
. . 057
.047
.016
.055
-0.010
-0.004
-0.010
.006
-0.010
-0.010
-0-010
-0 . 0 0 4
-0.004
-0.004
-0.004
SI 02
MG/L
* «■a-« it* #
.600
0
S . 240
1.000
.900
3.000
2 . 700
3-400
5.100
4.900
3.900
5.300
7.320
8.310
8.960
8.917
9.200
7.550
9,040
8.50ft
I0.300
8.170
7.800
4.470
7.690
9 . 14 0
8.500
3 . OftO
7.200
*.700
2.000
4.000
4.300
1.110
1-740
3.590
4.530
S-77
HAT E
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/7 3
6/18/73
6/25/73
7/ ?/73
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
1 0 / fl/73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/1 1/73
12/17/73
1/29/74
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
6/24/74
CAL<">0SAH4TC h EE R I V E R
K
M G /L
«■«■•» t- •» -> a
2.*90
0
4.450
7.770
3.940
3.910
3.920
3.840
4.830
4.680
3.760
3.430
3.310
2.470
2.710
2.300
2.650
2 . 1 30
2.960
2.510
0
0
2.700
0
0
3.500
8.200
1.960
6.900
5.00 0
5.500
5.300
5.100
4.700
4.500
7.40 0
4.900
NA
A.A.
CA
A.A.
MG
A. A.
41 . 6 0 0
0
60.300
51.300
54.800
57.900
58.200
59.000
55.000
54.60 0
50.900
46.500
38.000
26.900
32.600
28.400
29.000
24.700
31.400
30.000
30.000
24.000
24.000
18.000
21 . 1 0 0
35.000
56.000
25.500
55.000
59.000
47.000
55.000
61.000
62.000
66.000
72.000
50.000
36.600
0
52.700
45.100
42.100
4].600
43.700
46.100
61.500
61.200
56.500
52.600
45.800
41.400
43.800
35.300
40 . 5 0 0
35.600
39.800
36.200
49.900
36.800
42.000
31.^00
31.400
44.800
53.000
22 . 2 0 0
53.000
58.000
41.000
57.000
49.000
40.000
43.200
40 . 0 0 0
?p.000
13.200
0
19.100
16.000
16.000
18.400
18.000
17.000
16.000
15.800
14.300
12.000
10.300
7.700
8.300
7.200
8.000
6.000
9 . 10 0
16.800
8.600
6.200
7.100
5.600
6.200
11.700
18.000
7.100
20.000
2.000
14.000
17.000
17.000
20.000
18.400
19.200
« . 800
CL
mG/L
»##**«**
69.000
0
95.300
83.000
87.000
88.000
89.000
85.000
75.200
88.300
74.900
58.800
52.900
34.140
5 3 .2 9 0
52.400
48.200
43.740
52.200
48.400
67.100
43.500
40.700
26.500
33.600
56.600
91.000
40 . 100
98.000
89.000
73.000
94 . 0 0 0
97.000
108.700
106.900
1 07 . 2 0 0
91.300
ALK
M E .Q /L
»«»«»«»«
1.790
1.930
2.140
1 .5 2 0
2.150
2.200
2.310
0
3.190
3 . 190
2.920
2.670
2.430
2.350’
2.180
1.710
2.070
1.740
2.640
2.200
2.950
2.080
1 .980
1.340
1 .370
2.390
3.440
1.290
3.200
,3.100
2.400
3 .,0 4 0
2.400
2.890
2.830
2.630
2.900
PH
LAB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7.380
7.480
7.420
7.710
8.010
0
7.400
0
0
0
0
0
7.960
0
0
7.800
S-7PT
DA T E
F I S h e AT I K1G C ^ E E K
1
T-P
MG/L
'j -r- -L- -> it- ■
>-'■■>v-
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/2S/73
7/ 2/73
7/ 9/73
7/16/73
7/ ? 3/ 73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
1 0 / f t / 73
10/15/73
10 / 2 3 / 7 3
10/29/73
11/13/73
11Z2-/73
12/11/73
12/17/73
1/ 2 Q / 7 4
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
6/24/74
.029
. 060
.040
.060
.060
.050
. 040
.060
.072
.077
.060
.100
.120
. 123
.130
.154
. 14 B
.137
.135
.139
.132
.139
. 128
.07R
. 12*
. 092
.120
.103
.090
.085
.250
.080
.070
,047.
.053
.046
. 0 3.5
0«-P
MG/L
T
NH3-N
MG/L
v> -t> it v- -u* -y- -y-
9If■
>
}
.011
.007
.010
.021
.005
.005
-0.002
.010
. 024
.021
.023
.054
400
870
230
540
620
680
900
530
920
780
560
0
540
876
620
760
490
890
320
220
490
810
050
050
540
090
370
090
300
560
320
.12 0
420
23 0
530
860
640
. 032
.057
.105
.112
.102
.108
.099
. 09?
.107
.121
.099
.052
. 0 71
.062
. oao
.071
. 0 90
.066
.210
.04-0
.040
.008
.017
.009
.011
0
-0.010
.070
.080
.030
.030
.030
.030
.030
-0.010
.080
.070
-0.010
-0.010
-0.010
.030
. 0 22
.190
-0.010
.020
.040
.047
.029
-0.010
.020
-0.010
.130
.020
. 140
.060
.030
.040
.020
-0.010
. 0 33
.025
..047
N03-N
MG/L
-0 . 0 0 2
-0.00**
. 0 19
.012
•015
-0.004
-0 . OOti
-0.008
.00v
.062
-0.008
.024
-0.008
-0.008
-0.00a
-0.008
-0 . 0 0 d
-0.004
-0.004
-0,004
-0.004
-0.004
.Ole
-0.004
. 0 Oo
-0.004
.010
.028
. 050
. 0 18
.100
.010
.020
. 0 17
. 033
.070
.010
N02-N
MG/L
.005
-0.002
-0.002
.007
.005
.005
-0.004
-0 . 0 0 4
-0.008
.013
. 006
.004
-0.008
-o. o o r '
-0.008
.010
-o.ooa
-0.008
.006
-0.004
.006
-0.004
.007
.006
.005
-0.004
-0.010
-0.004
-0.010
, .007
-0.010
-0.010
-0.010
.005
.005
.006
-0.004
S I 02
MG/L
.900
2.450
2 .650
1.600
.500
. 300
. 300
1 .600
5.500
6.600
7.200
7.100
7.200
7.330
7.380
6.839
5.300
4.290
4.070
0
4.200
3.510
3 . 540
1.110
2.120
2.580
-0.100
3.100
3.000
3,100
2.000
.800
.200
.440
.530
-0.400
7.310
S-7p
\
F I S h E ftTIMG C R E E K
i
DATE
K
MG/l
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7 / 9/73
7/16/73
7^/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ S/73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1/29/74
2/27/74
3/2]/74
5/13/74
5/28/74
6/10/74
6 / ?4 / 74
.450
.890
.530
2,160
1 .730
2.170
2.330
1 .440
.910
.650
1 .280
] .400
1 .660
1 .390
1 .520
1.110
1 .050
.950
.830
.700
0
0
.800
0
0
.900
1.100
.660
1.600
3.000
9.000
3.600
2,800
2 . BOO
3.000
3.000
0
NA
A.A.
32.600
29.000
31.400
31 . 4 0 0
3 9 . 100
42.900
44.300
35 . 0 0 0
24.500
25.100
25.900
43.500
25.500
23.600
18.700
16.500
15.100
14.800
13.200
12.000
11.000
9.900
11.000
12.000
11.800
12.000
17.000
16.200
19.000
20,000
26.000
3 6 . O'O 0
4 9 . OOO
6 4 . 0 00
70 . 00 0
42^000
20 . 0 0 0
CA
A.A.
■e-o-m m *
10.800
15.500
17.900
17.000
20. 100
24 . 5 0 0
25.200
16.300
13.500
12.500
12.400
13.000
1 1 .400
10.300
10.800
8,100
7.400
R.200
4.500
5.000
6.600
4.100
6.700
6.400
6.300
6.500
9.000
7.100
10.000
11.000
13.000
26.000
35.000
40.000
41 . 0 0 0
35.400
37.^00
MG
A . A.
6 .400
5.000
6.800
6.800
8.^00
10.500
1 1 ,noo
7,500
5.900
5.400
5,500
6.200
5 . 100
4.900
4.200
3.800
3.500
3.500
3.300
6.200
2.500
2.700
3.200
3 . 2 00
3.000
3.100
4.000
3.900
5.000
6.000
5.600
9.400
12.000
1 7 . 2 00
17.200
17.200
7,200
CL
MG/L
« « «• a e e « «
70.000
55.000
62.900
67.000
75.000
77.000
ALK
MEQ/L
.320
.580
.690
85.000
.510
0
0
1 .190
68.000
48.700
48.400
46.200
55.800
42.700
46.700
35.140
29.400
32.700
39.610
26.100
0
21 . 5 0 0
18,600
20.100
2 1 .700
29.500
25.000
32.000
32.600
40 . 0 0 0
39.000
52.000
65.000
8 1.000
104.100
115.900
120.000
]02.200
. 740
,280
.350
. 380
.400
.380
-3 5 b
.320
.330
.310
.220
.700
.300
.310
.270
.280
.290
.290
. 380
.440
.230
.400
.
.300
.560
,.840
1.400
2.56 0
2.710
2.340
2.820
PH
LAB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6.590
6.560
6.580
6.720
6 . 770
0
6.900
0
0
0
0
0
7.580
0
0
7.800
5-7 1
DA T E
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/1 1/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7-/23/73
7/30/73
9 / 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1Z 2 9 / 7 4
2/27/74
3/21/74
5/13/74
5/28/74
6/1 C/74
6/24/74
HARNEY
P0\'0 C A N A L
T-P
MG/L
OP-P
MG/L
#int(nt94e
mnntv«tc
.099
.100
.110
.180
.150
.150
.140
.500
.405
.468
.480
.580
.490
.276
.184
.253
.204
.100
.168
.704
. 396
.489
.195
.103
.125
. .098
.120
. 0 95
.090
.079
.070
.080
.080
.097
.126
• 14?
.202
.071
.062
.082
.122
.090
. 0 75
.100
.300
.388
.036
.416
0
.245
.229
.157
.219
.167
. 1 76
. 146
.586
.490
.384
.099
.073
.08 3
.030
.090
.073
.070
.057
.040
. 03, 0
.030
.047
.011
.083
.150
mg/L
.900
1 .390
.890
1.070
.900
I .200
1 .070
.2.050
1 .560
1 .840
1.320
0
1 .820
2.172
1 .930
2.070
1.770
.910
1.760
2.720
4 .000
4 . 560
1.310
1 .020
1 .520
1..400
1.170
1.350
1.200
. 9S0
.980
1 .040
.740
.970
.820
.980
1 .120
NH3 -N
MG/L
. .500
.040
.080
.090
.070
.030
.070
.050
.220
.210
. 170
.220
. 1 10
.297
.269
.172
.200
.470
.170
.540
.450
.788
.298
.072
.170
.124
.090
.050
. 1 20
.100
.020.
. 04f]
-0.010
-0.010
. 125
.018
•
0
M0 3 -N
MG/L
.058
.02*
.038
.038
. 097
.006
. 146
.126
-0.008
.105
.118
.122
.057
.144
.309
.119
.337
• 307
.265
• 386
.173
.267
.317
.154
.388
. 244
.030
.092
.140
.237
. 100
.110
.010
. 441
. 0 81
.040
.121
N02-N
MG/L
SI02
MG/L
iHftt-tHHHH*
»##«»»«*
002
002
002
2.300
1 .650
2.410
1 .900
2.300
2 . 300
2,800
5.100
6.800
7.200
6.500
-0
-0
-0
-0
-0
-0
-0
-0
004
004
004
004
004
008
008
Oil
Oil
-0
018
015
015
Oil
3.090
010
019
013
015
037
Oil
-0
-0
-0
006
008
0 16
0 10
004
010
-0
0
6.260
8.100
.500
5.940
010
4 . 300
5.500
3.000
010
010
1 . soo
009
0 04
004
0 19
2.580
2.590
3.400
3.750
027
-fO
-0
-0
8.000
7 .540
8 .590
9.980
8.856
10.400
11.070
8.300
9.100
9.500
10.450
008
1. 0 0 0
5 -71
OflTE
5/ 7/73
5/14/73
S/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7./23Z73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1/29/74
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
6/24/74
HARNEY
POND
K
MG/L
■S'ttfl-tnnn;-*
2.340
1 .870
2.200
3.180
2.030
2-330
2 . 160
2.900
3.670
3 . 160
3.110
3.820
2.750
2.550
2.200
1.870
2.500
3.380
2.390
3.510
0
0
1 .600
0
0
1.800
2.000
2.230
2.900
2.000
3.900
4.100
3.500
1.900
0
3.300
3.600
CANAL
NA
A.A.
10.900
10.300
15.800
10 . 4 0 0
12.100
22.700
13.400
8.000
9.500
9.100
10.300
12.000
12.800
9.700
11 .800
11.200
10.100
11.400
10.100
7.000
7.000
11 .000
9.000
9.000
8.900
10.000
16.000
8.400
26.000
10.000
30 . 0 0 0
39.000
49.0,00
1 0 . 0 00
12.000
17.000
1 2 . 0 00
.
.
CA
MG
A.A.
A . A.
»#*»«■(>##
11.800
10.400
17.100
11.90 0
12.500
23.100
14.500
7.800
13.200
13.500
13.000
19.000
1R.000
20.600
21.600
15.500
21.500
28.800
15.300
16.800
14.600
21 . 6 0 0
16.500
11.000
10.000
16.600
17.000
12.000
28.000
1A . 000
30 . 0 0 0
39.00 0
45.000
9.600
10.000
16.800
1 1 . B00
4.900
5.200
5.900
4.800
4.900
7.500
5.700
3.400
4.900
4.900
4.100
5.000
5.300
5.700
5-900
4.100
6.500
8.200
5.500
8.200
4.200
5.900
5.200
3.600
3.300
4.800
5.200
4.200
8.100
5.000
9.600
12.000
13.000
5.000
4.400
5.800
4.600
CL
mG/L
18.000
17.800
25.000
18.000
20.000
36.000
23.000
13.000
14.400
16.300
15.100
17.600
15.400
21.830
18.630
21.113
20.500
18.900
16.200
16.500
14.700
15.800
14.000
15.400
2 1 . 0 00
20.400
27.000
15.400
43.000
17.000
45.000
67.000
78.000
19.500
17.000
27.900
29.900
PH
ALK
MEO/L
* » «■o It•&■
»*
.270
.220
.430
.200
.360
.820
.400
.160
.210
.190
.250
.430
.380
.490
.360
.380
.390
.340
.330
.240
.210
.290
.190
.180
.230
.340
.920
.160
1 .280
.300
1.760
I, 1 . 6 8 0
1 .880
. 180
.2?0
1.080
.340
lab
«»-&»#-»«0
0
0
0
0
0
0
0
0
0
_
0
.0
0
0
0
0
0
0
0
0
0
0
6.410
6.480
6.490
6.800
6.810
0
6.700
0
0
0
0
0
6.850
6.600
0
6.680
S-72
INDIAN
i
DATE
■S-Otv3-■
!)■C
-0--5
5/ 7/73
5/14/73
5/21/73
5/39/73
6/ 4/73
6/11/73
6/18/73
'6/25/73
7/ E/73
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
1 2/11/73
12/17/73
1/29/74
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
* /?4/74
PRAIRIE
T-P
MG/L
* o * * - > -a- a *
.087
.120
.110
.031
.160
.160
. 150
.310
.568
.528
.360
.410
0
.688
.19?
. 184
.281
. .299
.293
.246
.200
.327
.135
.056
. 1 04
.103
. 130
.098
.140
. 0 89
.090
.070
.070
. 0 iS9
.140
.277
.41 n
CAKJAL
OR-P
MG/L
*
«■ *
>i
<:* «■
>i
TKN
MG/L
NH3-N
MG/L
N02-N
MO/L
449»0«»*
N03-N
MG/L
*
.028
. 0 38
.070
.089
.092
. 1 00
.080
.180
.308
.224
.232
. 304
.580
.446
.175
.156
.218
.220
.286
. 144
. 114
.075
.053
.073
.04-7
.064
.070
.065
.110
.057
.050
. 0 20
.040
.013
.047
.212
.250
1.200
1.880
1.030
1.030
.920
.870
1.000
1 .410
.640
? . 160
1.340
0
3.310
3.424
2.040
2.370
2.330
2.000
2.290
3.030
3.040
6.200
2.000
1 .200
1.900
1.330
1.410
2.110
1.400
.890
1.000
.800
1. 0 0
1.450
.990
1.3R0
?. 0 30
.
.070
-0.010
- 0 . 0 10
. 060
.140
.060
.020
. 0 10
.010
- 0 . 0 10
.070
.130
.410
.461
.281
. 309
.374
.240
.410
.840
.570
1.020
.782
.073
.213
. 054
.110
. 100
.120
. 130
.040
.020
. 0 60
. 040
. 0 38
.. 0 5 2
0
.004
-0.004
-0.004
-0.008
. 042
. 041
-0 . 0 0 8
-0 . 0 0 H
-0.008
-0 . 0 0 8
-0.008
-0.008
-0.00b
-0 . 0 0 8
.249
-0.008
-0.008
.008
.044
.058
.OlU
.004
.051
.154
.330
.256
.320
.204
.320
.157
.100
.030
.040
-0.004
.208
-0 . 0 04
.013
.
-0.002
-0 . 0 0 2
-0.002
.004
.005
. 004
-0 . 0 0 4
-0.004
-0.008
.011
.006
-0.004
.010
. 0 08*
.020
.008
-0.008
.008
.042
.023
. 0 14
.005
.014
.006
.014
.008
-0.010
-0 . 0 0 4
.020
.008
->0 . 0 1 0
-0.010
-0.010
.004
.220
-0 . 0 0 4
. 0 05
S 102
mg/ l
1.900
2 . 190
7 7 . 300
2.600
1 .700
3.20 0
3.010
3.500
5.800
7.200
5.600
8.000
10 . 4 0 0
12.970
10.020
10 . 6 5 2
11.600
11.320
12.650
10.800
11.300
9.240
9.150
? . 1 20
7.550
8 . 220
2.000
8.810
7.200
6.100
5.000
4.000
3.300
2.160
4.750
5.350
R. 1 1 0
S- 72
INDIAN
l
DATE
5/ 7/73
5/14/73
5/2 1 /7 3
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ ?/73
7/ 9/7 3
7/16/73
7/2 3/7 3
7/3(1/73
8/ 6/7 3
8/13/73
R/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/?4/73
10/ 1/73
1 0 / f l / 73
10/15/73
10/23/73
10/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1/29/74
2/27/74
3/21/74
5/13/74
5/28/74
6/10/74
f>!> /~ltx
PRAIRIE
K
MG/L
1.910
1.300
1 .<*20
2.980
2.160
1 .600
1 .760
2.050
2.740
2.730
2.010
4.420
4.170
3.970
2.190
2.010
2.750
2 .460
2.390
3.600
0
0
2.000
0
0
2.100
3 . 100
1 ,790
2.600
2.000
2.700
2.000
2.300
2.400
0
3.600
5 . non
CA N A L
NA
A.A.
CA
A.A.
MG
A.A.
CL
MG/L
***■»■**«*
11.800
13.100
12.700
12.300
9.600
12.800
14.100
11 . 0 0 0
13.400
16.600
13.000
23.000
1 4 . 100
13.500
11.500
12.200
15.000
15.000
17.300
13.000
19.000
11.000
13 .300
14 . 5 0 0
1 1.600
17 . 2 0 0
7 .800
17 . 8 0 0
16 . 8 0 0
13 . 4 0 0
18 . 4 0 0
25 . 2 0 0
1* . 1 0 0
22? .000
25 . 7 0 0
27 . 2 0 0
21 . 7 0 0
23 . 4 0 0
26 .500.
29 . 7 0 0
2? .200
31 . 6 0 0
3? . 5 0 0
?3 . 6 0 0
12.000
9.000
13.80 0
22.000
18.000
15.400
21.000
12.000
25.000
19.000
2 7 . 0 00
13.000
16.000
21 . 0 0 0
2 6 . 000
26 . 4 0 0
10 . 9 0 0
19 . 2 0 0
33 . 5 0 0
30 . 0 0 0
25 . 7 0 0
3ft . 0 0 0
?4 . 0 0 0
34 . 0 0 0
.000
32 .000
q .600
28 . 2 0 0
17 . 6 0 0
2 3 . bOO
5.200
4.300
5.300
5.600
4.400
5.800
5.900
4.900
4.900
4.900
4.100
6.200
ft. 1 0 0
6*600
^.900
5.800
6.500
6.600
7.000
1^.800
7.700
5.900
6.500
3.600
5.000
7.400
7.300
6.20 0
R. 100
5.000
8 . 000
6.400
8.000
5.000
6.000
7 . .2 0 0
f t. 8 0 0
19.000
22.300
30.000
20.000
16.000
19.000
21.000
1.800
17.100
2 4 . 100
18.500
30.600
17.300
24.480
18.240
22.077
25.400
23.230
25.500
27.400
32.800
16.700
18.100
15.000
19.600
39.500
27.000
25.600
33.000
19.000
35.00 0
30.00 0
42.000
17.500
26.400
3 2 . 100
4 3.90 0
ALK
MEQ/L
tnnntflttfre
.330
.350
.350
.340 .
.160
.460
.480
0
.640
.930
.480
.900
.640
.900
.440'
.720
1.010
1.120
1 .320
.710
1 .050
.390
.480
.180
.470
1. 070
.880
.920
1 .200
.600
1.360
1.240
1.440
.170 .
1.210
1 .060
1.34 0
PH
LAfl
*-tnnnnnnj
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6.230
6.660
6.310
6.91.0
7.170
0
7.000
0
0
0
0
0
6.760
7.200
0
7 . 35 0
K I S S I M M F F PIVEW
D4TEI
T-P
MG/L
o-* <• & K
-■
{>s-<a
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8*/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8 / 7 3
10/15/73
10/23/73
10/29/73
11/13/73
11 / 2 6 / 7 3
12/ 3/73
12/11/73
12/17/73
.047
.040
.040
.080
.060
.080
.030
.050
.06 3
.096
.130
.180
.490
• 224
. 0 35
.039
. 046
.081
.090
.102
.074
.077
.057
.095
.097
. 0 9 1'
.110
.082
.039
.090
.061
OR-P
MG/L
if iHt ftC-- i if
.005
.006
.005
.004
.009
.032
-0.002
.017
.028
.055
.096
. 1 1*
.267
.123
.018
.027
.010
.056
.047
.050
.047
.026
. 0 14
.067
. 060
.064
.080
.054
. 048
.070
. 044
TKN
Mf, / L
int» * * «
1.500
1 .400
1.200
1.400
1 .190
1.110
1.050
I . 110
1 .240
1 .590
1.260
0
1.320
1.546
1 . 120
1.420
1.100
1.110
1.470
I .770
1.410
1.650
.920
1.280
1 .410
.800
1 .070
1 .430
1.600
1.170
1.140
NH3*N
MG/L
.140
.010
-0.010
■. 050
.070
.110
.020
.030
.110
.120
.280
.260
.260
.171
-0.010
.146
.066
.160
.170
.120
.150
.212
.091
.147
.222
-0.010
.110
. 040
- 0 . 0 10
.070
. 1 00
M0 3 ~N
MG/L
.014
.022
-0.004
-0.008
- 0 . OOes
.016
-0.008
.030
.012
.029
.007
.131
.012
. 0 17
-0.008
- o . ooa
.046
.005
.025
.007
.010
.040
.007
.024
.057
.146
.300
.252
.164
.24 0
.261
NO? -N
MG/L
.009
-0.002
-0.002
- 0 . 0 04
-0.004
.005
-0.004
.010
-0.008
.014
.009
.005
.008
- 0 . 0 08
-0.008
-0.008
-0.008
-0.008
-0 . 0 0 4
.008
.004
-0.004
-0.004
.012
.030
.130
-0.010
-0.004
-0.004
t O.OIO
-0.004
$102
MG/L
# -fr**
2 . 700
2.490
2.590
?6.000
2.600
2.800
2.800
3 . 1 00
3.400
4.500
5.000
5.000
6.260
5.040
2.410
4.781
2.900
4 . 19 0
4.380
4.800
4.500
4.770
4.020
2.980
■ 4.500
5 . 1 90
2.500
6.300
2.800
3.20 0
4.400
ro
co
S-65F
K I S S I M M E E PTVE&
DATE!
T-P
MG/L
OR-P
MG/L
TKN
Mr, / L
NH3 -N
m g '/L
innfe-t
1/ 2/74
1/14/74
1/28/74
2/11/74
2/25/74
3/11/74
3/25/74
4/ 8/74
4/22/74
'
.034
.037
.004
.009
.032
.033
.030
.030
.031
.09?
. 069
.1-51
,005
. 0 12
.02*
.010
.014
.070
,030
. rjo j
1 .340
1 .350
1 .500
1.7*0
1.570
I .600
.570
1.050
,960
,
6 3P
.100
.110
.070
.060
.090
.010
.030
.120
.300
0
M0 3 - N
mg/ l
« -c-* •»
.192
.191
.188
.140
. 1 9ti
.004
.018
.082
.181
.030
N0 2 -N
MG/L
(tuifni-ftf«
-0.004
.019
.008
-0.004
-0.004
-0.004
-0.004
.009
.005
.004
SI 0 2
mg/ l
4.700
5.300
5.570
5.5«0
5.760
2.020
0
2.290
4.450
4.910
< ISSTMMFE
d a t e
,
PTV^P
K
MG/L
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/1 a/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8^13/73
8/20/73
B/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/13/7 3
11/26/73
12/ 3/73
12/11/73
12/17/73
1 .410
1 .430
1 .300
6.590
1 .350
2.000
1 .370
1 .360
1.810
1.650
1 .440
1.350
1.850
1 .070
1.630
1.020
1 .600
.900
1.050
1.140
3.680
0
1.000
0
0
1.400
3.200
1.750
1.900
4.100
2.000
MA
A. A.
«• •!>■
&■
"■*iH:- tt
12.600
13.500
11 . 6 0 0
12.200
13.200
16.9Q0
15.000
14.000
14.700
13.500
13.700
12.500
11.900
44 . 9 0 0
10.700
1 1 .200
10.000
9.000
8.700
7.000
9.000
8.000
10.000
11 . 0 0 0
11.500
11.000
22.000
16.900
17.000
35.000
17.000
CA
A .A .
13.900
13.800
8.100
13.500
12.900
1^.800
14.000
13.000
1^.400
16.300
15.300
15.000
14.500
12.200
Q . 100
10.200
7.500
9.700
7.300
5.600
R.700
Q.400
9.600
10.100
11 . 2 0 0
1 1 . BOO
20.000
16.800
22.000
31.000
23.000
MG
A. A.
■a-**** *>«■«■
3.700
4 . 700
3.500
4.000
3.800
4 . 8 QQ
4.500
4.500
0
4 .000
3.900
3.000
3.400
2.400
4.200
2.900
5 . 000
2.500
2.400
4.400
2.600
3.500
2.900
2.800
2.900
3.000
6.500
4.400
5.000
12.000
5.000
CL
MG/L
9490>>«i J
ALK
MEQ/L
« <n nn n i 4 e
2 0 . CO O
?1 -700
19 . 5 0 0
I B . 00 0
21 * ^ 0 Q
29.000
2 7 . COO
2 3.000
22.300
2 0 . “ 00
19.^00
16.500
15.000
15.770
14.^40
21 • -V->
19.200
1 3 .1 r 0
1 2 »■* ’j 0
16.100
16 . r 0 0
14.100
17.^00
.630
• 460
.390
.330
.560
.530
.490
.540
.570
.650
.610
.620
.580
.260
.150
.450
. 180
.460
.410
.420
.480
.110
.430
. 450
.460
.500
1.000
.580
.200
1 .800
'.600
ltw'00
1 f' . 2 0 0
]9 . ^00
3 « . '-OO
2^ * 600
2 8 . COO
6 7 . ; oo
2 7 . COO
PH
lar
'
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6.240
7.080
7.320
7.310
7 . 120
0
7.100
0
0
0
S-65F
D
•■
K
I S
S
I M
TE .
M
E
E
riv
*1
^
K
MG/L
a
c
«■ -j- £ ■ -a- t
s
»
- o - t •> c - o - ^
A
«■
*
<■ *
N
6
.
A
-:- *
•
v<
■
ca
A*A•
wG
A. A-
o - •:> -a-
CL
mG/L
ph
LAR
alk
Mc Q / L
^
^ ^ ^
#
’C? ^
-ti- •£• o
I
1/ 2 /7 4
1/ 14/74
1Z28/74
2/11/74
2/25/74
3/11/74
3/25/74
4/ 8/74
4/22/74
6/74/74
CQ
1.000
I .600
0
1 .500
1.70 0
2.200
0
2.200
2.000
2.000
11 . 0 0 0
11.000
12.000
12.000
13.000
14.000
17.000
20.000
13.000
13.000
14.000
13.000
17.300
1^.800
1 3 . 0 00
108.000
15.000
16.200
19.000
1^.400
-
S . 000
4.800
5.100
5,000
5 . 200
3.400
4.400
9.800
5*200
^.200
12.000
16.400
lfl.800
17.000
I B . 500
20.000
27.100
35.500
26.800
28.300
.200
.120
0
. 300
.420
1.010
.700
1 . 170
.320
.720
0
6.900
7.200
6.500
7,300
0
6.890
6.810
7.200
7.530
S-84
DATE;
5/ 7/73
5/14/73
5/21/7 3
5/24/73
6/ 4/73
6/11/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8X20/73
8/?7/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/2^/73
12/ 3/73
17/17/73
L AKF I STOKPOGA
T-P
OP-P
T^N
MG/L
mg/ l
MG / L
.025
.030
,020
.060
. 040
.090
.060
.050
.050
.110
* 080
.280
.117
.038
.026
.052
*046
.027
.085
.049
.058
.054
.063
. 057
.052
.040
.020
. n c;6
NH3-N
MG'/l.
NJ03-N
MG/L
W0 2 -N
MG/L
a v-a-<- o-* «•
-0.002
-0.002
.004
.003
.005
.018
.010
.002
.011
.053
.041
.166
. 041
.026
.006
.010
.007
-0.002
.025
0
.026
.021
.016
.010
. 025
.013
.CIO
.03?
.000
.820
.800
.170
.180
. 120
.020
.0 00
.270
.390
0
. 340
.341
.981
.710
.590
.830
.100
.360
.280
.390
.020
.970
.350
.060
’. 7 3 0
.430
. 24fi
0
- 0 . 0 10
-0.010
..050
.100
.030
.030
.040
.060
.210
.140
.020
-0.010
.034
.054
.075
.010
.030
.100
,100
.209
.111
.054
.105
. 1 05
.070
.010
. i
.006
-O . 0 0 4
-0.004
. 0 13
.018
. 0 13
• lib
-0.008
. 043
.057
-0 . 0 3 2
*0.008
-o.ooa
- 0 . OOd
-0 . 0 0 8
.093
-0.004
.008
.055
.028
.042
.057
.034
.039
. 069
.142
• 158
.214
-0.002
-0.002
-0.002
-0.004
-0.004
-0.004
-0.004
-0.008
-0.008
.009
-0.004
-o.ooa
-0.008
-0.008
-0. 008*
-0 . 0 0 8
-0.008
-0.004
-0.004
.005
-0.004
-0.004
.005
. 004
.127
-0.004
. 005
.004
S I 02
Mg / L
■ua-a-ttfl-v-t-'n-
1.100
.990
.630
2. 000
.700
2.900
1.800
2.100
3.400
3.700
4.600
3.380
2.320
2.410
2.663
2.900
2.080
2.850
3.700
4.100
4.530
4.080
1 . 1 30
3.470
4.330
3.020
.400
4*900
t
03
"■J
S-fi*
DfiTEl
LAKF I S T O K p OGA
T-P
M f,/L
-c- c- c e C- -O i> -a-
1/
2/74
1/14/74
1/28/74
2/11/74
2/25/74
1/11/74
3/25/74
4/ 8/74
4/?2/74
5/13/74
5 / 2 8 / 7 4
6/10/74
? w 7-j
O^- P
MG/L
fl- w * * * & * *
.031
.030
.111
.037
.032
.027
.029
.033
.065
.028
.027
.04 8
.005
.01?
0
.015
.006
.012
.012
.012
.028
.003
.100
.027
.1 1Q
.0^7
TKKJ
mg/L
N H 3-N
M03- N
MG/L
Mfy/L
N02- N
MG/L
s-« s--»a a «
1 .610
1.500
1.300
2.540
1 .390
1.070
.670
1 .150
1.080
1.360
.850
1.460
.9 nn
. 040
.080
. 0 30
.100
.080
-0.010
.050
.140
.330
.080
.121
'.0 6 *
0
.174
• 164
.198
.130
.159
.324
.155
.155
.184
.177
• 14b
.086
.045
.007
.020
.006
. 005
-0 . 0 0 4
-0.004
. 005
.004
.006
.006
-0.004
-0.004
.004.
SI02
Mr,/L
ettaattttaa
4.800
0
5.550
5.580
5.580
5.210
0
5.270
4.470
4.660
4.990
7.630
4.970
S-R4
lake
oate
istokpoga
k
:
MG/L
■
&<• * * * «■* «■-i>i>
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/25/7 3
7/ 2/7 3
7/ 9/73
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8 /7 3
10/15/73
10/23/73
10 / 2 9 / 7 3
1l/?6/73
12/ 3/73
12/17/73
1.830
1 .920
1 . 8*30
3.580
1 .750
1.500
1.770
2.090
2.080
1 .980
2.010
2.060
1.650
1 .670
1 .530
1.700
1 .660
1 .260
1 .320
0
0
1.200
0
0
1.400
1.290
1.400
2.000
NA
A.A.
£• -> o
10.300
11.100
10.000
11.500
10.600
14,800
14.000
13.900
14.400
15.400
15.000
10 . 9 0 0
11.200
10.700
10.200
10.000
9.400
8.800
7.000
7.000
8 . 10 0
8 .000
7 .200
8.400
8.000
9.900
10.000
16.000
CA
A.A.
«
10.100
9.100
4.700
12.900
8.000
17.000
11.200
11 . 5 0 0
15.600
16.100
18.600
10.300
9.300
9.000
R.500
7.500
5.700
4.500
4.600
7.600
9 . 000
11.300
5.900
7.200
7.400
9.100
11.000
21 . 0 0 0
MG
A ^A ,
!><r-a-a-*•»**•&■
4.700
4.100
4.500
4.300
4.600
4.800
5 . 100
5.300
5.900
5.600
6.000
4.400
4.300
4.200
4.100
4.000
3.600
3.400
6.200
3.200
3.500
3.800
2.700
3 . 1 00
3.200
4.000
4.000
5.000
CL
MG/L
15.000
19.200
18.300
19.000
18.000
25.000
22.000
20.800
22.200
20.700
17.400
13.300
21.830
21.160
12.000
20 . 1 0 0
28.170
15.600
15.900
13.400
13.600
14.000
12.500
13.300
17.300
18.500
17.000
27.000
ALK
ME ; 0 / L
-cnnn***##
.170
. 140
. 130
.300
.190
.560
.310
.240
.410
.460
.440
.250
.220
.220 .
.220
. 180
. 140
.150
.140
.130
. 110
.110
.110
. 1 30
.120
.080
-0.100
.300
PH
LAB
*■** -fr
^
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6.210
6.390
6.390
6,550
6 .430
6.700
0
0
07
-R4
-LAKE
DATE
* r.-
\
<-£ £• t-
1/ ? / 7 4
1/14/74
1/28/74
? ./1 1/74
2/35/74
3/11/74
3/25/74
4/ 9/74
4/22/71.
5/13/74
5/28/74
6/10/74
6/?4/74
ISTOKPOOA
K
MG/L
c-w 3w ■
>
l> -
2 . 0 00
1.500
0
1 .800
1.600
1.700
0
1.900
1 .900
1 .800
0
■2.500
2.400
NA
A. A.
a■
>* C- C w
ft«■-
11.000
12.000
12.000
12.000
11.000
12.000
11.000
13.000
13.000
12.000
14.000
16.000
15.000
CA
A. A.
ft-90-O
2-
13.000
15.400
16.700
1^.800
12.600
24.000
14.200
18.000
19.000
1^.200
21 . B O O
18.600
16 . 4 0 0
MG
A. A.
ftv-ft0•>is Lift
4.000
5.000
4.900
5.000
s . ?00
5.200
4.600
10.600
5.600
<=. . POO
6.200
6.. 4 0 0
5.400
CL
MG/L
■911-il-ftftftftft
ALK
MFO/L
ft-eftoe-ftftft
PH
L AR
ftftftftft ftftft
1 2 rd oo"
0
20.200
17.000
18.500
19.000
19.300
19.300
24.400
20 . 3 0 0
21 . 6 0 0
20 . 6 0 0
27.900
.^20 0
.100
0
.290
.380
.780
. 390
.260
.400
.400
.600
.280
. 7 2 0.
6.900
7.100
6.700
7.200
0
7.100
7.250
7.200
6.890
7.200
0
7.510
B20
I
0
i
S - l 33
DATE-
T A YLOP CPF^K
T-P
MG/L
5JC35fS5
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ ?/73
77 9 / 7 3
7/16/7 3
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/13/73
11Z26/73
12/11/73
12/17/73
1/29/74
3/19/74
.141
.160
.130
.140
.240
.140
.170
.750
.800
.508
.880
.330
.330
.348
.296
. 381
.368
.363
.477
.488
.066
.358
.353
.118
.340
.267
.470
.220
. 380
.130
.240
.080
OP-P
MG/L
t> a ■> -jc-a
.082
. 107
.093
.057
. 126
.032
.110
. 780
.650
.440
. 390
.256
.253
.249
.021
.363
. 306
.240
.432
.412
. 464
.307
. ?.oo
. 140
.012
.092
. 380
.188
. 340
. 060
. 170
.020
TKN
WG / L
■a- ■» -w- ^ <i £ o-
1 .800
1 .250
1 .320
.990
1.340
] .090
1.510
I .870
1 .780
1 .880
1 .470
1 .520
1 .470
1 .608
1 .580
1 .560
1.810
1.470
1 .840
1 .550
1.870
1 .730
1 .060
.970
I .930
1.100
1.380
1.720
1 .480
1 .660
1.610
1.480
NH3-M
MG/L
.020
.050
.030
.060
.080
.040
.100
. 190
.260
.350
.330
.230
.120
.086
.150
.180
. 15?
.310
.140
.200
.250
.235
.239
. 265
.191
.045
.220
.120
.120
. 030
.110
.060
W03-M
MG/L
v -e -g -a # ca a
N 0 2 -N
MG/L
*<nnnnm*
.020
.027
.010
-0.008
-0.002
-0.002
-0.002
-0 . 0 0 4
.006
-0.004
-0.004
.010
-0.006
.279
.042
.oil
.009
- 0. 008
.050
-0 . OOtt
-0.008
.077
.079
.286
- 0 . OOts
-0 . 0 0 8
.032
.031
.136
.104
.062
.024
.023
.04 6
. 186
.237
.151
. 140
.078
.050
.076
.020
.030
.on
.004
-0.008
-0 . 0 0 8
.014
-0.008
.018
.016
.021
.013
.010
. 022
.050
.075
.017
-0. 010
-0.004
-0.010
.007
-Q.010
-0.01-0
sio?
MG/L
O-■»<*
<•
2.600
2.550
2.770
1 .900
3.000
2.400
3.600
6 . 700
6.800
5.500
6.900
8.200
7.800
7.710
8.430
7.787
7.500
6.850
6 . 340
6 . 300
18.400
7.050
7.700
7 . 030
8.570
9.080
6.500
6 • 44 0
5.600
4.600
1.500
3.500
cn
ro
S-133
TAYL09
date
* * «■-’
j <■irJ>
B22
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/1 1/73'
6/18/73
6/25/73
7/ 2/7 3
7-/ 9 / 7 3
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
1 0 / fl/73
10/15/73
10/23/73
I0/29/73
11/13/73
11/26/73
12/11/73
12/17/73
1/29/74
3/19/74
CRE E K
NA
K
A. A.
MG/L
c-e-a-B'
eir-B-tt-tHiC-tt
2.960
3.760
3.420
3.830
3 . 13 0
2.970
3.920
4 . 12 0
5.290
4.620
4.240
4.080
3.170
2.870
3.340
3.270
3.900
3.210
3.290
3.100
0
0
3.200
0
0
3 . 700
7.200
4 . 150
6.600
4 .600
7.100
4.900
38.800
56.400
50.300
33.300
48.500
50.000
62.800
34.000
40 .800
42.000
40.800
52.500
34.300
0
36.300
29.500
20.800
27.100
22.400
23.000
24.000
25.000
31.000
34.000
38.700
42.000
46.000
50.600
49.000
51.000
5 4 . 00,0
3 6 . 0 00
.
CA
A.A.
MG
A.A.
35.600
42.600
4^.400
32.000
37.800
39.900
47.700
24.000
35.200
35.800
35.500
45.200
31.600
3 4 . 1 00
33.400
31.000
28.500
28. 300
23.200
20.400
24.500
24.900
32.800
36.000
40 . 4 0 0
16,700
51 . 0 0 0
41.100
55.000
17.600
47 . 000
46 . 000
11.500
14.000
14.100
10.000
12.300
13.600
16.800
7.900
10.900
11.400
10.400
10.000
7.100
6.700
6.500
6.800
7 . 0 00
6.100
5.800
9.600
5 .600
5.700
7.300
7.200
7.900
7.700
1 2 . 0 00
10.000
14.000
1 4 . 0 0-0
15 . 0 0 0
15.000
CL
MG/L
*#*»«#*#
65
85
88
57
83
81
1 09
61
73
75
67
80
51
57
58
53
42
48
36
42
49
46
49
55
66
76
84
32
93
87
86
92
000
700
200
000
000
000
ooo
000
300
400
900
000
700
7 40
740
2 00
700
090
10 0
000
500
000
200
800
100
800
ooo
000
000
50 0
ooo
ooo
ALK
MEO/L
fnnnnnnnt
1 . 760
1 .830
1 .630
.970
1.710
1 .850
2.220
.980
1 .500
1.640
1.650
1 .990
1 .630.
1 .600
1 .720
1 .490
1.580
1.330
1.210
1 . 140
1.510
1.410
1 .650
1 .670
1 .770
2.200
2.600
2.500
2.880
'2.700
2.740
2.280
PH
L*B
eftinttnmo
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7.740
7 .460
7.610
7.610
7.570
0
7.400
0
0
0
0
' -) ■
<iNIJriH I
i
DA T E
■
-
6/10/74
6/24/74
T-p
MG/L
1.160
1.100
1 . 050
1 .200
1 .200
.930
.880
. 84(1
.720
.09?
.600
.810
-0.500
1.012
.830
1 .380
.712
.400
1.008
. 4 34
.876
.988
.588
.920
1 .060
.924
1.200
.100
.501
.760
.760
.600
.32 0
.330
.418
.403
OR-P
MG/L
3 w v<-«-*
1.080
-0.500
-0.500
.981
. 966
.920
.700
.700
.580
.080
.540
.550
.500
.744
.500
.960
.684
-0.400
.529
.332
.824
.929
.550
.570
. 640
.810
1.040
.080
. 189
.700
.700
. 56. 0
.270
. 330
.363
i 370
TKN
Mr, / L
NH3-N
MG/L
c-<-5<«il«c
£ tt -a- -B -5 * * fl-
1 .300
1.670
1.220
1 .280
1 .330
1 .240
1 .300
1.320
.700
2.210
1.970
1 .920
1 .930
2.273
2.040
2.000
1.760
1.110
2.050
1 .240
2.050
2.520
1 .390
1.520
2.400
1 .260
1.410
1.300
1.420
.960
.660
1 .150
1.710
1 .2^0
1.320
1.230
■. 0 4 0
.060
.150
.060
.020
.300
.030
.020
.020
.540
.190
.420
.310
.337
.277
.297
.172
.590
.310
.110
.370
.323
.378
.198
. 15 Q
. 147
.110
. 060
. 1 00
. 040
.100
.150
o.oio
. 327
. 04Q
0
M0 3 -N
MG/L
■
.874
. 760
.583
.377
.352
.308
.280
.250
.236
.010
. 046
.031
.071
.049
.183
.099
.112
.014
.125
.034
.121
.216
.45 3
• 20b
.264
.265
. 480
.320
.700
.640
.390
. 060
-0.004
-0 . 0 0 4
.03b
. 004
N02-N
MG/L
-0
Oil
002
4 . 300
3. 090
065
026
052
046
060
070
067
007
0 14
3.«l0
3.600
3.900
016
017
0 22"
029
OIB
017
024
036
010
047
112
123
039
-0
-0
-0
-0
-0
-0
-0
-0
-0
SI02
MG/L
0
4.?Q0
4.400
48.000
7.800
7.700
7.200
7.200
8.080
9.490
7.484
6.400
7.070
7.430
4.400
8.000
9.470
ft. 3 4 0
4.490
0 68
1.010
175
7.340
3.000
010
010
6.000
006
0 10
6.000
010
010
004
004
004
004
7.400
.500
.500
1 .620
1.890
1.040
1 . 300
B23
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/73
7/ 2/73
7/ 9/73
7/16/73
7-/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ ^/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 9/73
1C/15/73
10 / 2 3 / 7 3
10/29/73
11/12/73
12/11/73
12/17/73
1 / 2 c>/ 74
2/29/74
3/19/74
5/13/74
5 /? s /74
"■
'■
I
S - 191
B24
DATE
N U8 R I M SLOUGH
1
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/18/73
6/25/7 3
7/ 2/73
7/ 9/73
7/16/73
7/23/73
7/30/73
9/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/12/73
12/11/73
12/17/73
1/29/74
2/28/74
3/19/74
5/13/74
5/28/74
6/10/74
6/24/74
K
MG/L
* * * <H># «■>
7.340
7.460
6.990
12.500
7.450
7.050
6.660
6.430
7.000
5.740
3.630
3.600
3.900
3.860
4.620
3.990
3.700
6.310
4.000
2.170
0
0
5.200
0
0
6.100
9.400
6.900
7.000
13.000
11.000
9.400
7.Q00
0
9,300
7.200
NA
A. A.
78.400
73.200
72.500
67.400
77.400
77.600
71.200
78.000
62.900
32.000
24.000
19.000
16.400
22.900
2S.000
15.900
19.500
24.800
29.300
14.000
20.000
30.000
34.000
21 . 0 0 0
2 6 . 1 00
32.000
38.000
52.000
36.000
80.000
86.000
98.000
124.000
.124.000
12.700
100*000
CA
A. A.
a# *-5-a
MTt
A.A.
O •» ■
»* « i t «<•
CL
iH} #0-* ■
=■fl-^
43.700
37.700
42.600
41 . 4 0 0
37.400
3 8 . 100
35.200
33.200
34.100
22.800
17.700
15.400
14.800
19.700
23.500
17.400
15.800
19.600
19.900
7.000
15.200
23.000
2 7 . 100
16.200
18.900
18.100
29.000
51.000
31-000
45.000
5 3.000
52.000
64.800
64.600
4 « .400
.28.20 0
15.300
13.300
13.400
13.600
13.400
14.600
1 3 . 100
12.800
11 . 9 0 0
7.000
5.200
3.800
3.800
4.60 0
5.000
4 . 7 00
4.000
4.700
5.700
5.600
4.000
5.900
8.600
5.000
4.900
5.200
7.600
20.000
8.000
15.000
i a . ooo
17.000
2 5 . 00C
23.400
19.600
10.800
150.000
142.400
14 2 . 6 0 0
143.000
145.000
0
1 3 5 . 0 00
138.000
121.600
53.900
4 9 . 8 00
28 . 8 0 0
15.600
4 6 ■5 6 0
47.040
25.000
41.200
42.650
57.700
31.800
40.900
58.900
58.000
40.600
49.000
64.700
74.000
98.000
66.000
156.000
17 6 .0 0 0
198.000
287.200
265.200
2 4 4 . 000
?00 . 4 0 0
mG/L
ALK
MEO/L
itSIHXtiHttt
1.580
1.300
1.210
1.020
1 .400
1.300
1.280
1 .300
1.310
.850
.560
.620
.590,
. 830"
.960
.740
.650
.830
.950
.340
.820
1 .020
I . 1 10
.700
. 790
1.230
1 .280
1.400
1.200
,1.800
2.040
2.120
2 . 080
2.260
1.890
2.090
PH
LAB
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7 . 190
7 . 150
7.060
7.030
7.840
0
0
0
0
0
0
5.980
7.800
0
7.740
1
S-! 5 3
ST.
D^TE
LUCIF
1
CANAL
T-P
MG/l .
OP-P
m g
«#<■ Dit-tv
e o c-<■■
>» i-*
5/ 7 / 7 3
5/14/73
5/21/73
5/29/73
6/ 4/ 7 3
6/11/73
6 / 1 R/73
6/25/7 3
7V 2 / 7 3
7/ 9 / 7 3
7/16/73
7/23/73
7/30/73
3/ 6 / 7 3
3/13/73
3/20/73
8/27/73
9/ 4 / 7 3
9/10/73
9/17/73
9/24/73
I'D/ 1 / 7 3
10/ 8 / 7 3
10/15/73
10/23/73
10/29/73
11/14/73
12/12/73
.047
.050
.030
.070
.060
.060
.020
.110
.260
.055
.100
.200
.150
.159
.173
.200
0
.234
. 1 39
.081
.267
.277
.133
.0 64
.107
.109
.110
.300
/l
t <s-i>t>s ---v-
.005
-0.002
.010
.009
.030
.043
-0.002
.070
.196
.009
.079
.140
.115
. 104
.174
. 179
.071
.160
.122
.055
.235
.172
.099
.068
.076
.148
.ObO
.230
T K N
MG/L
1 .500
1.360
1 .140
1 .570
1 .2*0
1 .030
1.110
.990
1
.060
1 .840
1.160
0
1 .350
1.615
1 .730
1 .8P0
1 .370
1 .070
1 .630
1.190
1 .690
? .0?0
.9 4 0
1 . 1 20
1 . 39 0
1 .140
i . 2^0
3.030
MH 3-N
MG/L
C-fi-*■«■-0-
. 140
.080
.090
.020
.160
.090
.060
.080
. 100
-0.010
.130
.130
.070
.023
.103
.071
.028
.390
.060
.040
.100
.112
.09Q
.039
.053
.067
.090
.no
N03-N
MG/L
-0 . 0 0 2
—0 • 0 0 4
.047'
.472
.077.
.039
• 356
. 140
.156
.013
.020
. 102
.020
.019
.124
-0 . 0 0 8
- 0.00b
.022
.017
.008
.016
.012
.Old
.009
.009
.021
. 340
.350
N02-N
MG/L
i nnnn n n n t
-0.002
-0.002
-0 . 0 0 2
.005
.003
.004
-0 . 0 0 4
.010
.023
-0.008
, .006
.007
-0 . 0 0 8
-0 . 0 0 &
.020
.008
-0.008
-0 . 0 0 8
-0.004
.008
.006
-0.004
-0.004
.005
-0 . 0 0 4
-0.004
- 0 . 0 10
-0.010
5102
MG/L
* * * o-* -tt-t-■
a-
.400
5.820
4 . 24'0
4.100
6.100
7.700
3.600
10.000
10.500
7.800
6.500
8.200
7 . 120
6.860
7.120
6 .698
4.900
4.290
4.960
4.100
5.100
5.010
4.900
2.680
3.800
4 . 5 70
6 . 500
?G . 0 0 0
825
S-153
ST.
LUCIE
CATE
**fr*
5/ 7/73
5/14/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6/1 A/73
6/25/73
7/ 2/73
l j 9/7 3
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/7 3
9/10/73
9/17/73
9/24/73
10/ 1/73
10/ 8/73
10/15/73
10/2 3 /7 3
10/29/73
U/14/73
12/12/73
CANA L
K
MG/L
rA
A.A*
MA
A.A.
W W
.
a-a-a-tt-a-*
2.840
3-870
3.590
5.290
3.650
3.350
2.600
4.130
6.430
3.350
2.430
3.240
2.580
2.330
3.180
1 .890
1 .650
2.100
1 .830
1 .290
0
0
2.100
0
0
2.300
8.000
7.400
54.200
53.700
47.900
49.700
50.500
58.200
60.000
61.000
43.000
59.700
42.500
45.500
44.500
60 . 4 0 0
32.300
33.300
30 . 4 0 0
30.900
35.400
20.000
17.000
24.000
28.000
24.000
27.200
27.000
62.000
51.000
\
kO
oo
CO
MG
A* A.
59.900
50 . 4 0 0
49.500
51.400
49.500
59.800
57.500
71.000
57.500
5* .800
33.200
53.000
32.800
35.700
3^.100
28.800
28.50 0
24.800
25.700
13 . 8 0 0
2] . 0 0 0
16.900
25.000
21.300
24.800
?i . n o
52.000
64.000
9.000
15.300
15.600
16.300
14.800
14.600
10.300
12.200
10.400
11.400
7.300
8.600
7.700
7.700
6.500
5.800
6.500
5.100
5.300
7.600
4.500
3.800
5.200
4.200
4.600
4.300
19.000
25.000
CL
MG/L
ALK
MEQ/L
o e t t S 't n n t *
o tn n n t tflfl
000
2.760
300
500
2.230
1 .990
1.770
2.540
3.000
2.690
0
3.110
2.810
1.510
2.540
1 .590
1.650’
1 .730
1.360
1 .490
1.400
1 .560
1.000
1 .080
1 .060
1 .290
1 .020
1 . 14 0
1 .330
3.000
3.000
101
82
75
81
78
88
1 09
84
69
102
69
62
71
80
51
62
58
53
60
41
37
39
48
40
44
49
1 00
1 02
000
000
00 0
00 0
000
800
100
400
800
600
680
680
600
300
960
900
800
700
600
20 0
2 00
2 00
000
000
000
PH
LAB
!(* & * * » « ■ »
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7.180
7.460
7 .540
7.370
8.010
0
0
HG5 5 AMO W . P . R . CANAL
D4TE
<j
T-P
MG / L
OR-P
MG/L
TKN
MG/L
NH3 -N
MG/L
tte ■
&a
5/ 7/73
5 /U /7 3
5/21/73
5/29/73
6/ 4/73
6/11/73
6/1 A/73
6/P5/73
7/ 2/73
1 -/ 9 /7 3
7/16/73
7/23/73
7/30/73
8/ 6/73
8/13/73
8/20/73
8/27/73
9/ 4/73
9/10/73
9/17/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10 / 2 9 / 7 3
11/14/73
11/26/73
12/12/73
12/17/73
1/30/74
2/27/74
3/20/74
5/28/74
.093
.009
.050
.070
.070
.080
.060
.090
0
.071
. 1 07
.007
.100
0
.174
.046
.068
.100
.083
.136
.092
.089
.065
. 064
.097
.091
.060
.039
.080
.052
.080
.170
.110
.250
.002
.023
.008
.025
.029
-0.002
0
.013
.042
.003
. 044
0
.082
.041
. 046
.040
.033
.073
.077
.051
.042
.043
.052
.019
.040
.002
.060
.052
.050
.080
.060
-0.002
1.200
1 .800
1.860
1 .580
1.530
1 . 16 0
1 .750
0
2.500
2 . 160
1 .380
2.690
0
3.111
1 .690
1 .910
1 .930
1 .260
1 .850
2.690
1 .570
1 .290
1 .420
3-090
1 .640
1 .390
2.720
1.910
2.010
1-260
1 .750
1 .500
1 .970
130
020
040
070
200
1 30
030
0
150
510
190
550
0
598
191
223
211
070
150
400
140
246
143
462
037
090
090
150
240
040
010
020
04^
N0 3 -N
MG/L
ata-Bins-it-e-
.053
.011
.017
.030
.132
.186
.040
0
. 045
• 012
.056
.341
0
.077
.215
.190
.230
.17b
• 203
.470
.219
.246
.174
.176
.192
.190
.167
.600
.232
.250
.330
.020
.18 1
N02-N
MG/L
*•»##*##*
-0
-0
-0
0 02
00 2
00 2
-0
003
OOB
OOB
004
0
-0
-0
-0
008
008
004
029
-0
008
O'
012
018
025
01 2
017
062
018
056
-0
-0
-0
-0
-0
-0
-0
SI02
Mr, / L
6.800
4.760
S . 700
5 . 400
5.400
S . 100
5.900
0
4.400
1 1.300
2.400
0
9.480
10.600
0
7.216
5.200
3.240
5.100
12.100
S . 720
9.630
010
11 .2 20
033
004
18.720
7.270
010
f-0 0 0
004
040
7.370
J 3.000
Oil
010
010
01,0
004
.
8.000
6.000
7. 700
7.30 0
4.360
t
ro
ro
H6S
5
AND
'uj. P . B .
CANAL
i
OATE
K
MG/L
«■«’««<}« c-«
5/ 7/73
5/1 A/73
5/21/73
5/29/73
6/ 4/73
6/11/73
6 / 1 f t / 73
6/25/73
7/ ?/7 3
7/ 9/73
7/16/73
7-/23/73
7/30/73
8/ 6/73
8/13/73
8/20/7 3
co
Csj
CQ
8/27/73
9/ 4/73
9/10/73
9/17/73
10/ 1/73
10/ 8/73
10/15/73
10/23/73
10/29/73
11/14/73
11/26/73
12/12/73
12/17/73
1/30/74
2/27/74
3/20/74
5/28/74
3.970
3.850
3.770
8.400
4.090
4.020
4.740
0
4.790
6.940
4.690
0
6.010
5.770
0
4.910
5.100
4.300
3.690
4.B50
0
4.600
0
0
4.000
8.600
4 . 4 fl 0
12.000
5.100
6.300
5.^00
4.900
0
NA
A. A.
* c-a-* t-* «■v-
56 .4 0 0
5 2 . 100
50.400
53.600
57.200
57.700
38.400
0
64.000
118.000
70.400
0
95.500
100.200
0
78.000
75.000
59.200
41 . 4 0 0
67 . 000
45.000
66 . 000
67.000
126.000
58.000
62.000
59.800
118.000
65.000
55.000
56.000
59.000
55.000
CA
A. A•
51.200
45 .600
4 9 . 100
52.900
4 8 .400
47.400
60.000
0
52.300
57.200
52.100
0
5 « .600
56.100
0
49.200
43.500
46.600
32.800
35.600
36.400
50.400
48.400
*5.400
48.600
53.000
42.000
73.000
60.000
45.000
62.000
49.000
49.000
MG
A.A.
*******-:!■
18,400
16.100
16.800
1 7 . 10 0
17.300
18.800
11.200
0
20 . 0 0 0
2 4 . 300
19.500
0
25.000
23.800
0
19.000
16.500
17.700
11.400
34.400
12.900
19.300
19.000
28 . 6 0 0
19.30 0
20.000
17.500
32.000
21 . 0 0 0
17.00 0
20.000
17.000
18.400
CL
mG/L
93.000
79.700
81 . 8 0 0
86.000
89.000
86.000
86.600
0
98.100
140.300
99.300
0
]39.400
130.590
0
40.000
96.600
89.610
61.500
103.700
72.100
89.300
95.200
157.800
90.700
102.000
89.300
188.000
101 . 6 0 0
83.000
90 . 0 0 0
9 3.000
94.700
ALK
MEQ/L
PH
LAR
is-***
*******■»
2.690
2.250
2.280
1.870
2.530
2.590
2.440
0
2.870
4.030
2.990
0
3.660.
3.590"
2.370
3.070
2.850
2.830
2. 320
2.880
2.370
3.090
3.200
3.850
3 . 160
3.240
2.890
3.360
3.000
,2.800
3.000
2.680
3.220
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7.990
8.020
8.120
8 . 0 70
8.050
0
7.900
0
0
0
0
0
8 . 300
APPENDIX C
DISTRIBUTION OF PHYTOPLANKTON ABUNDANCES AND COMPOSITIONS
LAKE OKEECHOBEE - 1973
/ X
/
_/
/
* p
95 O
J i 5S >
_8as y
• * 10- A l
> >
N.
—
-v
X
\
X
JANUARY
A
y
y
y
m
.1
j
^
\
l
Q
MARCH
/
/
/ \
8ZS
2 £ jC T ^
b 9 4 X -7 \
J ^ V )
s
\
18_ 0 \
s\
—
9i O
m
.1
4
« jO • * '0 - 0
X
/
/
K 9s _ D 1
5 -0
89—0
X
_
j
)
•* t i y
_ 83 _ S 2 f
>V
n
t
/
15-16
FEBRUARY
X
y
y
/
1 5^ " § . « I9 A
.■ « * £ 1 « U > )
K sl - p !
I 7 :l- 9
. 1 2 'L ^
\
y *
o S i i N l
- * J k
1 .
Q _44 1 i \ f A
A -5 (^ i i
62^0
^
9- °
J
«*
\
O -P ® in
a — 4. !
i 78v
o __ *
■
2 Vi
• " 20_(D
■
|,\ V
M
1 4_A
86—0 I
I 7 O ,1 5_A
*■ 7- w
1O_j0
X
\
S
/ X
y
j
I
5— 6
Q - ! 1 la k o
A — 7 ■ ■ 9j A
V
I 11- ?
«_o 1 * r2 J
3__o # i 2^0 • *
/
. i 38.
63 - 9 T\
5— 7
1M CE
2420L A K E O K E E C H O B E E , 1973
,6 D IS T R IB U T I O N
PHYTO PLANKTO N
12
A B U N D A N C E & C O M P O S I T IO N
^ '
*
DATA MISSING
UNJTS/m1o J
APRIL
1 0 — 12
PttfCfcUIASE
C y a n o p h y ta
O
C h lo r o p h y t a
A
C h ry s o p h y ta
o
E u g le n o p h y t a □
Y
$
\
|
C-2
M
\
m
o r2 *
/
m
y~~\
■ 09—0
H
/\
/
\
^
x
^7
N.
1 9: ^
/
. 1 2—o /
X
t& J Q
■ 7 --£
*1
3—D
/
m
63- ^ \
50 O J l 2 5 _ ^ \
25—A
12—0
2 5 -0
« 44_0 J
'* 5 6 -A ./
V
JUNE
9 -9
Q
m
K
f l 95'5—9*-i « BH 8CL^
«■
12 A
s -o
X *^^
/
16—0
3 - ^ iI
I
^
%
92|
\
O f* I
A " 6* 1
/
^
j i \
N.
X _____^
*— 10Q _ O /
X.
4 -5
A
/® —M L \
/
Q j i i
\
A_12 ■
\ „
X
o __.4 *
■ 9S vW
/
«■ 4 _ &
r
&
1 76- Y
*■
M AY
^
™
• * 13IJ D
/
\
1m ioo_v^>
\ n
" - 5 -I
J l 67- ^
33—A
•—33_0(
° 1 !A
x
JULY
9 — 13
AUGUST
|AB.I*NC1ANCE
24--1
L A K E O K E E C H O B E E , 1973
D IS T R IB U T IO N - P H Y T O P L A N K T O N
A B U N D A N C E & C O M P O S I T IO N
^ DATA MISSING
J12 ■
V .
UNITS/m1°
i j /
9 — 10
PERCENTAGE
C y a n o p h y ta
C h lo r o p h y t a
C h ry s o p h y ta
E u g le n o p h y t a
O
A
0
□
« A
/
I*
SEPTEMBER
NOVEMBER
OCT OWE R
*0— 12
1 0 — 11
14-15
LAKE OKEECHOBEE, t*73
DISTRIBUTION - PHYTOPLANKTON
ABUNDANCE & CQMPOStTJON
* ___
_______
DATA MISSING
■MPH
a*
2Q
«
*
J
6
iiifft i
Gyaoophyta O
Chlorophyta 4
CN^sophyta p.
EuglenophytaD
APPENDIX D
SCATTER DIAGRAMS FOR SIGNIFICANT PARAMETER PAIRS
LAKE OKEECHOBEE 1973
Number for data points correspond to sample station numbers.
D- I
SECCHI
DISC
DEPTH
(cm)
LAKE STATIONS
WITH SOFT BOTTOMS
SECCHI
DISC
DEPTH
(cm)
LAKE STATIONS
WITH HARD BOTTOM S
SECCHI
DISC
DEPTH
( c m)
SUMMER ( JUNE-OCT.) DATA
SECCHI
DISC
DEPTH
( cm)
WINTER (JAN.-M AY) DATA
SECCHI
DISC
DEPTH
(cm)
ALL 1973 DATA
LAKE OKEECHOBEE 1973
TOTAL PHOSPHATE vs SECCHI DISC DEPTH
D-2
SECCHI
DISC
DEPTH
(cm)
LAKE STATIONS WITH HARD BOTTOMS
LAKE STATIONS
WITH SOFT BOTTOM S
SUMMER (JUNE-OCT) DATA
SECCHI
DISC
DEPTH
(cm)
WINTER (JA N -M A Y ) DATA
SECCHI
DISC
DEPTH
[ c m)
A LL 1973 DATA
LAKE OKEECHOBEE 1973
ORTHO-PHOSPHATE vs SECCHI DISC DEPTH
D-3
1.68
5
1.25
5
1 ?1
0.6 3
50
100
SECCHI
150
DISC
DEPTH
£00
(tm )
LAKE STATIONS
WITH SOFT BOTTOMS
50
SECCHI
JOO
DISC
150
DEPTH
200
( c m)
LAKE STATIONS WITH HARD BOTTOMS
a
3
2'6 6
E
z
1-25
2. 50# -
0.63
1.38
3
6 43 6 7
6
O
50
2
100
SECCHI
CISC
150
DEPTH
ZOO
(cm)
SUMMER (JUNE-OCT.) DATA
57
^
1.2 5
'jL
h
32
I.S3
0. 63
I
432
2£
3
77
5
5
4.
100
SECCHI
DISC
150
DEPTH
200
E
1. 25
2'ae g* i
1
j J 3
2 . 43
4J
8
6 8 7ifi
5
3 , 5
a
2
( cm)
WINTER (JAN.-MAY) DATA
50
SECCHI
ICO
DISC
150
D E P T H ( c m)
ALL 1973 DATA
LAKE OKEECHOBEE 1973
TOTAL KJELDAHL NITROGEN vs SECCHI DISC DEPTH
200
0-4
D— 5
EOly
crri/sec^
A L L 1973 DATA
LAKE OKEECHOBEE 1973
SECCHI DISC DEPTH vs EFFECTIVE DISPLACEMENT INDEX
D’ 6
~
l OOf*
£o
3
IQ.LJ
Q
O 50
to
l
4
„
0
4
r
I
1000
200 0
F' ' -.' WARY
I■
l|
3000
4 0Q (
P R O D U C T f V I T Y ( m g C An 3 / d a y )
LAKE STATIONS
WITH SOFT BOTTOMS
loo
z o o
so
6
6
1
5
fi6 f
150 -
4
t>
1000
PRIMARY
o
tn
ji.
4
2000
3000
4000
P R O D U C T I V I T Y ( m g C / m 3/day)
WINTER (JAN-M AY) DATA
100
a
5
,
5
50
0
1000
200 0
PRIMARY
3000
PRODUCTIVITY
4000
(mgC/m^/day)
LAKE STATIONS
WITH HARD BOTTOMS
150
200
X
ISO
10 0
I
5
I66 5
0
1000
PRIMARY
0
5
I
1000
PRIMARY
3000
4000
(mgC/m^/day)
SUMMER (JUNE-OCT)DATA
SO
«
2000
PRODUCTIVITY
2000
PRODUCTIVITY
3000
4000
( m gC /(n3/da y)
A L L 1973 DATA
LAKE OKEECHOBEE 1973
SECCHI DISC DEPTH vs PRIMARY PRODUCTIVITY
SECCHt
DISC
DEP
D-7
a
o
r
( cm)
LAKE STATIONS
WITH SOFT BOTTOMS
PHYTOPLANKTON
UNITS/nr. I
SECCHI
CISC
DEf-TH
WINTER(JAN - MAY) DATA
LAKE STATIONS
WITH HARD BOTTOMS
r
150
baa 100
X
[ c m;
oo
4
I
DISC
DEPTH
50
-U
SECCHI
0
G260
12500
PHYTOPLANKTON
J
I87SO
25000
UNITS/m l
SUMMER (JUNE-OCT) DATA
PHYTOPLANKTON
U N I T S /r.:l
A LL 1973 DATA
LA K E OKEECHOBEE 1973
SECCHI DISC DEPTH vs PHYTOPLANKTON COUNTS
D-8
.019
.0 13
O
I
.0 19
4 6
o
.006
4
4
0
1000
PRIMARY
6
o
<L
2 000
3000
.013
4 000
P R O D U C T I V I T Y { pi g c / m ^ / d a y )
LAKE STATIONS
WITH SOFT BOTTOMS
.00 6
iooo
10 0 0
PRIMARY
4rco
P R O D U C T I V I T Y ( m g C / m 3/ d o y ,
WINTER (J A N -M A Y ) DATA
0
1000
PRIMARY
2000
30 0 0
4 000
P R O D U C T I V I T Y (mfl C / m 3/ d a j r )
.019
LAKE STATIONS
WITH HARD BOTTOMS
0.
.0 13
oCL
.019
s? ,013
5 5
5
ct
6
5!
6
5
E
1000
0C
1
PRIMARY
l
SUMMER (J U N E -O C T ) DATA
416
,0 0 6
65
5
55 $
5
10 0 0
PRIMARY
14
3000
4000
3
PRODUCTIVITY (mgC/m7day)
451 6 5
2000
PRODUCTIVITY
5
I
_L.
3000
W oo
fnn9 C/ ni Vita V )
A L L 1973 DATA
LAKE OKEECHOBEE 1973
ORTHO-PHOSPHATE vs PRIMARY PRODUCTIVITY
D- 9
PRIMARY
PRODUCTIVITY
(mgC/mV<fay)
LAKE STATIONS
WITH SOFT BOTTOMS
PRIMARY
P R O D U C T I V I T Y ( mg C / m 3 / d a y )
WINTER (JAIN-MAY) DATA
LAKE STATIONS
WITH HARD BOTTOMS
0 .30
z
0,20
o
ac o.io
4
6
0
5
S6
5 5
1000
primary
mm Im
2000
3 0 0 0 4 0 00
P R O D U C T I V I T Y ( m g c / n>3 / d ay )
SUMMER (JUNE-OCT) DATA
O
100 0
2000
3 00 0
4 000
PRIMARY
PRODUCTIVITY CmgC/m^/day)
A LL 197 3 DATA
L A K E O K E E C H O B E E 1973
N I T R A T E vs P R I M A R Y P R O D U C T I V I T Y
D-IO
0,19 -
0.12
4
4
0,19
0CL
1
w
>6
0- 06
3 % 2-
46
6250
64 34
%2 6,
n
8
0.12
<?
CL
I
12500
PHYTOPLANKTON
16760
3
8
3«
25000
€
0.06
UNITS / m l
*
6 Zy 5 | 6
LAKE STATIONS
WITH SOFT BOTTOMS
75
6250
12500
PHYTOPLANKTON
0. 19
18750
25000
UNITS /ml
WINTER (JAN-MAY) DATA
0.12
I
0.06
* '*81 '
0.f9
5 7
7
7? v
5
ftfiSO
12500
PHYTOPLANKTON
18750
23000
UNITS/mI
s 0.12
O*
0.
I
K
LAKE STATIONS
WITH HARD BOTTOMS
0.06
5
4
0. 19
7
5
4
4
5
6250
a. 0.12
'
78 5#S® 6^# a8
7 «3 6%2
12500
18750
PHYTOPLANKTON
UN ITS/ ml
SUMMER (JUNE-OCT) DATA
4
4
64 3 4
0.06
3 46 sL !5 .I4 6 4
3
25000
12500
16 7 5 0
PHYTOPLANKTON
6250
UNITS/m l
25 000
ALL 1973 DATA
TOTAL
LAKE
O K E E C H O B E E 1973
P H O S P H A T E vs P H Y T O P L A N K T O N COUNTS
D - 1J
6
>
4
20 00
4000
O
1000
E 30 0 0
-L
0 *1 0
0 ,2 0
0 -5 0
B'.D.t.( g-cm/*tc2 )
—1
°
‘
4°
LAKE STATIONS
WITH SOFT BOTTOMS
£
> 2000
Ku
3□
I
6
o
(L
>
tz
<
o
4
1000 -
jICLr
3000
ro
E
0.10
0,20
EDI
£ 2000
0 .3 0
040
(g - e m / * * c ^ )
WINTER (JAN-MAY) DATA
iOOO
0.10
£ 4000
hn
0 .2 0
EDI
( g -c m / s «
)
0 .3 0
0.40
4000r
LA KE STATIONS
WITH HARD BOTTOMS
to
E
| 3000
>
J- 3 0 0 0
H
O
O
o
cl
2000
i
I
O
4
4
2000
DC
1 I
1000
0
2
<
£C
a:
tx
<
L
1000
65
>
0 .1 0
0 .2 0
ED I
Jm
nip.
0.10
0 .2 0
EDI
(fl-cm /s#e2 )
0 .3 0
A L L 1973 DATA
0 .4 0
0 .3 0
(g -c m / se c^ )
SUMMER (JUNE-OCT) DATA
LAKE OKEECHOBEE 1973
PRIMARY PRODUCTIVITY vs EFFECTIVE DISPLACEMENT INDEX
0.40
3000
6
4
2000
looo
6e
PRI MARY
PRODUCTIVITY
(mgC/m
/day)
D -! 2
6230"
,2500
PHYTOPLANKTON
XtS3--- 88*00
UNITS/ml
3000
PHYTOPLANKTON
UNITS/ml
WINTER (JAN-MAY) DATA
2000
1 ,
1
1000
4000 -
PfinvlARY
PRODUCTIVITY
(mgC/mVday)
LAKE STATIONS
WITH SOFT BOTTOMS
a
8250
12500
I87S0
PHYTOPLANKTON
25000
v. 30 00
UNITS/ml
g
LA K E STATIONS
WITH HARD BOTTOMS
5
I
> ZOOO
i
30 00
1000
OL
6
|4
s
2000
6
1000
5
I ©
I
3850
12500
PHYTOPLANKTON
5
18750
2501
UNITS/ml
SUMMER (JUNE-OCT) DATA
IMARY
PRODUCTIVITY
tmge/mVooy}
4
62so
■Li
12500
PHYTOPLANKTON
m£do
UNITS/ml
A LL 1973 DATA
ziooo
L A K E O K E E C H O B E E 1973
P R I M A R Y P R O D U C T I V I T Y vs P H Y T O P L A N K T O N COUNTS
J