Reference Sheet

Calculus Reference
Basic Differentiation Rules
𝑑𝑑
[𝑐𝑐𝑐𝑐] = 𝑐𝑐𝑐𝑐′
𝑑𝑑𝑑𝑑
𝑑𝑑
[𝑒𝑒𝑒𝑒] = 𝑒𝑒𝑣𝑣 β€² + 𝑣𝑣𝑒𝑒′ (product rule)
𝑑𝑑𝑑𝑑
𝑑𝑑
[𝑐𝑐] = 0 (constant)
𝑑𝑑𝑑𝑑
𝑑𝑑
[π‘₯π‘₯] = 1
𝑑𝑑𝑑𝑑
𝑑𝑑
𝑒𝑒′
[ln 𝑒𝑒] =
(natural log rule)
𝑑𝑑𝑑𝑑
𝑒𝑒
𝑑𝑑
[𝑐𝑐𝑏𝑏 π‘₯π‘₯ ] = 𝑐𝑐 (ln 𝑏𝑏) 𝑏𝑏 π‘₯π‘₯ for b > 0
𝑑𝑑𝑑𝑑
𝑑𝑑
[𝑒𝑒 ± 𝑣𝑣] = 𝑒𝑒′ ± 𝑣𝑣′
𝑑𝑑𝑑𝑑
𝑑𝑑 𝑒𝑒
𝑣𝑣𝑒𝑒′ βˆ’ 𝑒𝑒𝑒𝑒′
οΏ½ οΏ½=
(quotient rule)
𝑑𝑑𝑑𝑑 𝑣𝑣
𝑣𝑣 2
𝑑𝑑 𝑛𝑛
[𝑒𝑒 ] = 𝑛𝑛 π‘’π‘’π‘›π‘›βˆ’1 𝑒𝑒′
𝑑𝑑𝑑𝑑
𝑑𝑑
𝑒𝑒 β€²
[ |𝑒𝑒| ] =
𝑒𝑒 for u β‰  0
|𝑒𝑒|
𝑑𝑑𝑑𝑑
𝑑𝑑 𝑒𝑒
[𝑒𝑒 ] = 𝑒𝑒 𝑒𝑒 𝑒𝑒′
𝑑𝑑𝑑𝑑
𝑑𝑑 π‘₯π‘₯
[𝑒𝑒 ] = ux ln 𝑒𝑒
𝑑𝑑𝑑𝑑
Basic Integration Formulas
οΏ½ π‘˜π‘˜ 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑑𝑑 = π‘˜π‘˜ οΏ½ 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑑𝑑
οΏ½[𝑓𝑓(𝑒𝑒) ± 𝑔𝑔(𝑒𝑒)] 𝑑𝑑𝑑𝑑 = οΏ½ 𝑓𝑓(𝑒𝑒)𝑑𝑑𝑑𝑑 ± οΏ½ 𝑔𝑔(𝑒𝑒)𝑑𝑑𝑑𝑑
οΏ½ 𝑑𝑑𝑑𝑑 = 𝑒𝑒 + 𝐢𝐢
οΏ½
οΏ½ 𝑒𝑒𝑛𝑛 𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑
= ln|𝑒𝑒| + 𝐢𝐢
𝑒𝑒
𝑒𝑒𝑛𝑛+1
+ 𝐢𝐢, for n β‰  βˆ’1
𝑛𝑛 + 1
οΏ½ 𝑒𝑒 𝑒𝑒 𝑑𝑑𝑑𝑑 = 𝑒𝑒 𝑒𝑒 + 𝐢𝐢
Properties of Exponents and Logarithms
Exponent
0 < π‘Žπ‘Ž β‰  1,
0 < 𝑏𝑏 β‰  1,
𝑒𝑒 > 0,
𝑣𝑣 > 0
Logarithm
Example
Rule
Rule
22 24 = 22+4 = 26
𝑏𝑏 π‘₯π‘₯ 𝑏𝑏 𝑦𝑦 = 𝑏𝑏 π‘₯π‘₯+𝑦𝑦
log 𝑏𝑏 (𝑒𝑒𝑒𝑒) = log 𝑏𝑏 𝑒𝑒 + log 𝑏𝑏 𝑣𝑣
(32 )3 = 36
(𝑏𝑏 π‘₯π‘₯ )𝑦𝑦 = 𝑏𝑏 π‘₯π‘₯π‘₯π‘₯
log 𝑏𝑏 (π‘’π‘’π‘Ÿπ‘Ÿ ) = π‘Ÿπ‘Ÿ log 𝑏𝑏 𝑒𝑒
log 3 (94 ) = 4 log 3 9 = 4 βˆ— 2 = 8
81 = 8
𝑏𝑏1 = 𝑏𝑏
log 𝑏𝑏 (𝑏𝑏) = 1
log 5 (5) = 1
78
= 78βˆ’6 = 72 = 49
76
50 = 1
1
= 4βˆ’2
42
(20)3 = (4 βˆ— 5)3 = 43 53
6 = log 2 26
Jennifer B
𝑏𝑏 π‘₯π‘₯
= 𝑏𝑏 π‘₯π‘₯βˆ’π‘¦π‘¦
𝑏𝑏 𝑦𝑦
𝑏𝑏 π‘œπ‘œ = 1
1
= 𝑏𝑏 βˆ’π‘₯π‘₯
𝑏𝑏 π‘₯π‘₯
(π‘Žπ‘Žπ‘Žπ‘Ž) π‘₯π‘₯ = π‘Žπ‘Ž π‘₯π‘₯ 𝑏𝑏 π‘₯π‘₯
π‘₯π‘₯ = log 𝑏𝑏 𝑏𝑏 π‘₯π‘₯
𝑒𝑒
log 𝑏𝑏 οΏ½ οΏ½ = log 𝑏𝑏 𝑒𝑒 βˆ’ log 𝑏𝑏 𝑣𝑣
𝑣𝑣
log 𝑏𝑏 (1) = 0
1
log 𝑏𝑏 οΏ½ οΏ½ = βˆ’ log 𝑏𝑏 𝑒𝑒
𝑒𝑒
log π‘Žπ‘Ž 𝑒𝑒
log 𝑏𝑏 (𝑒𝑒) =
log π‘Žπ‘Ž 𝑏𝑏
𝑒𝑒 = 𝑏𝑏 log 𝑏𝑏 𝑒𝑒
Example
log 2 (4 βˆ— 16) = log 2 4 + log 2 16
=2+4=6
8
log 2 οΏ½ οΏ½ = log 2 8 βˆ’ log 2 4
4
=3βˆ’2=1
log 4 (1) = 0
1
log 2 οΏ½ οΏ½ = βˆ’ log 2 32 = βˆ’5
32
log 2 16 4
log 4 16 =
= =2
log 2 4 2
8 = 5log 5 8
May 2010