Section 5.6: Integration by Substituion If the integrand has a quantity inside a set of parentheses or under a radical, you typically perform the integration using a u-substitution. The usual choice for u will be the quantity inside the parentheses. Be sure to account for the derivative du. Z 15x2 5x3 + 6 Example 1. Find 4 dx. Solution. We use a u-substitution with u = 5x3 + 6: Z 2 3 Z 4 u4 du 15x (5x + 6) dx = u = 5x3 + 6 2 du = 15x dx 1 = u5 + C 5 = Z Example 2. Find 5 1 5x3 + 6 + C 5 (9x − 5)3 dx. Solution. We use a u-substitution with u = 9x − 5: Z (9x − 5)3 dx = u = 9x − 5 du = 9 dx 1 9 du = dx Z u3 · 19 du 1 = 9 Z 1 = 9 = = u3 du 1 4 u 4 +C 1 4 u +C 36 1 (9x − 5)4 + C 36 2 SECTION 5.6: INTEGRATION BY SUBSTITUION Z x2 Z e9x−5 dx. Example 3. Find Example 4. Find Z Example 5. Find p 2x3 + 5 dx. (3x2 + 2)(x3 + 2x + 1)5 dx SECTION 5.6: INTEGRATION BY SUBSTITUION Z Example 6. Find (x + 3) Z Example 7. Find 1 dx (7x + 4)3 Z Example 8. Find p x2 + 6x + 1 dx (x2 x+3 dx + 6x − 3)5 3 4 SECTION 5.6: INTEGRATION BY SUBSTITUION Z Example 9. Example 10. 9x(x2 − 6)5 dx Find Z (x + 1)(4x2 + 8x − 9)3 dx Z e x √ dx x Find √ Example 11. Find SECTION 5.6: INTEGRATION BY SUBSTITUION Z Example 12. Find Z Example 13. Find (e−x + 5)3 dx ex 4x − 3 dx − 3x + 7 2x2 Z Example 14. Find 4x2 x−2 dx − 16x + 3 5 6 SECTION 5.6: INTEGRATION BY SUBSTITUION Z Example 15. 3 Find (x − 1)3 dx −2 Z Example 16. 1 Find x p x2 + 8 dx −1 Z Example 17. Find 3 4 1 dx 2−x SECTION 5.6: INTEGRATION BY SUBSTITUION 7 EXERCISES Find the following integrals. Check your answer by differentiating. Z 1. Z 2. Z 2x(x2 + 3)4 dx 2 3 14. 5 (3x + 2)(x + 2x + 1) dx Z 8 (4x − 5) dx 3. Z √ Z 15. Z 16. 5x + 3 dx 17. Z p x x2 + 4 dx 18. Z p (x + 2) x2 + 4x + 1 dx Z 1 dx (5x − 2)3 4. 5. 1 √ dx 3 4x + 1 (x + 1)(3x2 + 6x − 1)3 dx √ 1 dx 3x + 5 Z e4x−3 dx Z xex dx Z e x √ dx x Z (e−x + 2)6 dx ex 2 √ 6. 7. Z 8. Z 9. Z 10. x dx 2 (x + 6)3 x+3 dx 2 (x + 6x − 3)5 2x(3x2 − 1)4 dx 19. 20. Z 0 (x + 1)3 dx 21. −1 Z 2 (x − 2)2 dx 22. 0 Z 23. 4√ 2x + 1 dx 0 Z 11. 5x(x2 + 3)5 dx Z 1 24. x p x2 + 3 dx −1 Z 12. √ 3 8x − 1 dx Z 1 x2 (x3 + 2)2 dx 25. 0 Z 13. x2 (x3 − 6)4 dx Z 26. 0 2 x2 p x3 + 1 dx 8 SECTION 5.6: INTEGRATION BY SUBSTITUION ANSWERS 1. 1 2 (x + 3)5 + C 5 14. 3 (4x + 1)2/3 + C 8 2. 1 3 (x + 2x + 1)6 + C 6 15. 1 (3x2 + 6x − 1)4 + C 24 3. 1 (4x − 5)9 + C 36 16. 2 (3x + 5)1/2 + C 3 4. 2 (5x + 3)3/2 + C 15 17. 1 4x−3 e +C 4 5. 1 2 (x + 4)3/2 + C 3 18. 1 x2 e +C 2 6. 1 2 (x + 4x + 1)3/2 + C 3 19. 2e 7. − 1 (5x − 2)−2 + C 10 20. 1 − (e−x + 2)7 + C 7 8. 1 − (x2 + 6)−2 + C 4 21. 1/4 9. 1 − (x2 + 6x − 3)−4 + C 8 22. 8/3 10. 1 (3x2 − 1)5 + C 15 23. 26/3 11. 5 2 (x + 3)6 + C 12 24. 0 12. 3 (8x − 1)4/3 + C 32 25. 19/9 13. 1 3 (x − 6)5 + C 15 26. 52/9 √ x +C
© Copyright 2025 Paperzz