The Kato Square Root Problem for Mixed Boundary Conditions Moritz Egert joint work with R. Haller-Dintelmann and P. Tolksdorf June 2013 Setup D Let I Ω ⊆ Rd bdd. ‘rough’ domain, I D ⊆ ∂Ω closed, Pd AD u ∼ α,β=1 −∂α (aα,β ∂β u), I aα,β ∈ L∞ (Ω). I Realize AD on L2 (Ω) via form method Z d X aD (u, v ) := aα,β ∂β u · ∂α v , α,β=1 Ω dom(aD ) := HD1 (Ω) := u|Ω : u ∈ CD∞ (Rd ) H 1 (Ω) . Assume Gårding Inequality ∃λ > 0 : <(aD (u, u)) ≥ λk∇uk2L2 (Ω) (u ∈ HD1 (Ω)). Setup D Let I Ω ⊆ Rd bdd. ‘rough’ domain, I D ⊆ ∂Ω closed, Pd AD u ∼ α,β=1 −∂α (aα,β ∂β u), I aα,β ∈ L∞ (Ω). I Realize AD on L2 (Ω) via form method Z d X aD (u, v ) := aα,β ∂β u · ∂α v , α,β=1 Ω dom(aD ) := HD1 (Ω) := u|Ω : u ∈ CD∞ (Rd ) H 1 (Ω) . Assume Gårding Inequality ∃λ > 0 : <(aD (u, u)) ≥ λk∇uk2L2 (Ω) (u ∈ HD1 (Ω)). Properties of AD I I I −AD ∼ analytic contraction semigroup on L2 (Ω). HD1 (Ω) ⊆ dom(AD ) * HD1 (Ω) ∩ H 2 (Ω) in general. √ dom( AD ) = dom(aD ) = HD1 (Ω) if AD self-adjoint. The Kato Square Root Problem √ Does dom( AD ) = dom(aD ) = HD1 (Ω) always hold? Properties of AD I I I −AD ∼ analytic contraction semigroup on L2 (Ω). HD1 (Ω) ⊆ dom(AD ) * HD1 (Ω) ∩ H 2 (Ω) in general. √ dom( AD ) = dom(aD ) = HD1 (Ω) if AD self-adjoint. The Kato Square Root Problem √ Does dom( AD ) = dom(aD ) = HD1 (Ω) always hold? Positive Answers I Auscher-Hofmann-Lacey-Mc Intosh-Tchamitchian ’01: Ω = Rd , Properties of AD I I I −AD ∼ analytic contraction semigroup on L2 (Ω). HD1 (Ω) ⊆ dom(AD ) * HD1 (Ω) ∩ H 2 (Ω) in general. √ dom( AD ) = dom(aD ) = HD1 (Ω) if AD self-adjoint. The Kato Square Root Problem √ Does dom( AD ) = dom(aD ) = HD1 (Ω) always hold? Positive Answers I Auscher-Hofmann-Lacey-Mc Intosh-Tchamitchian ’01: Ω = Rd , I Auscher-Tchamitchian ’03: Ω strongly Lipschitz, D ∈ {∅, ∂Ω}, Properties of AD I I I −AD ∼ analytic contraction semigroup on L2 (Ω). HD1 (Ω) ⊆ dom(AD ) * HD1 (Ω) ∩ H 2 (Ω) in general. √ dom( AD ) = dom(aD ) = HD1 (Ω) if AD self-adjoint. The Kato Square Root Problem √ Does dom( AD ) = dom(aD ) = HD1 (Ω) always hold? Positive Answers I Auscher-Hofmann-Lacey-Mc Intosh-Tchamitchian ’01: Ω = Rd , I Auscher-Tchamitchian ’03: Ω strongly Lipschitz, D ∈ {∅, ∂Ω}, I Axelsson-Keith-Mc Intosh ’06: Ω smooth, D̊ extension domain of ∂Ω and bi-Lipschitz images of these configurations. Properties of AD I I I −AD ∼ analytic contraction semigroup on L2 (Ω). HD1 (Ω) ⊆ dom(AD ) * HD1 (Ω) ∩ H 2 (Ω) in general. √ dom( AD ) = dom(aD ) = HD1 (Ω) if AD self-adjoint. The Kato Square Root Problem √ Does dom( AD ) = dom(aD ) = HD1 (Ω) always hold? Positive Answers I Auscher-Hofmann-Lacey-Mc Intosh-Tchamitchian ’01: Ω = Rd , I Auscher-Tchamitchian ’03: Ω strongly Lipschitz, D ∈ {∅, ∂Ω}, I Axelsson-Keith-Mc Intosh ’06: Ω smooth, D̊ extension domain of ∂Ω and bi-Lipschitz images of these configurations. Reduction to −∆D Minimal smoothness assumptions I Existence of a bounded extension operator H 1 (Ω) → H 1 (Rd ), I d-set property: |B(x, r ) ∩ Ω| ∼ r d (x ∈ Ω, r ∈ (0, r0 )). I No assumptions on D. I Includes all bounded Lipschitz domains. Reduction to −∆D Minimal smoothness assumptions I Existence of a bounded extension operator H 1 (Ω) → H 1 (Rd ), I d-set property: |B(x, r ) ∩ Ω| ∼ r d (x ∈ Ω, r ∈ (0, r0 )). I No assumptions on D. I Includes all bounded Lipschitz domains. Reduction to −∆D Minimal smoothness assumptions I Existence of a bounded extension operator H 1 (Ω) → H 1 (Rd ), I d-set property: |B(x, r ) ∩ Ω| ∼ r d (x ∈ Ω, r ∈ (0, r0 )). I No assumptions on D. I Includes all bounded Lipschitz domains. Proposition If dom (−∆D ) 1+α 2 ,→ H 1+α (Ω) for an α > 0, then HD1 (Ω) √ = dom( AD ). Reduction to −∆D Minimal smoothness assumptions I Existence of a bounded extension operator H 1 (Ω) → H 1 (Rd ), I d-set property: |B(x, r ) ∩ Ω| ∼ r d (x ∈ Ω, r ∈ (0, r0 )). I No assumptions on D. I Includes all bounded Lipschitz domains. Proposition If dom (−∆D ) 1+α 2 ,→ H 1+α (Ω) for an α > 0, then HD1 (Ω) √ = dom( AD ). Extrapolate Kato property for −∆D =⇒ Kato property for general AD Reduction to −∆D Minimal smoothness assumptions I Existence of a bounded extension operator H 1 (Ω) → H 1 (Rd ), I d-set property: |B(x, r ) ∩ Ω| ∼ r d (x ∈ Ω, r ∈ (0, r0 )). I No assumptions on D. I Includes all bounded Lipschitz domains. Proposition If dom (−∆D ) 1+α 2 ,→ H 1+α (Ω) for an α > 0, then HD1 (Ω) √ = dom( AD ). Extrapolate Kato property for −∆D =⇒ Kato property for general AD geometry ! operator theory Our Geometric Setting Let I I Ω bounded Lipschitz domain, D a (d − 1)-set: |B(x, r ) ∩ D| ∼ r d−1 (x ∈ D, r ∈ (0, r0 )). D Introduce n o 1+α I HD (Ω) := u ∈ H 1+α (Ω) : u|D = 0 Hd−1 - a.e. I {HDθ (Ω)} 1 <θ< 3 complex interpolation scale. 2 2 (|α| < 12 ). From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. p 2 1−α I dom (−∆D ) 2 = L , dom( −∆D ) 1−α From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. p 2 1−α I dom (−∆D ) 2 = L , dom( −∆D ) 1−α From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. p 2 2 1 1−α I dom (−∆D ) 2 = L , dom( −∆D ) 1−α = L , HD 1−α From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. p 2 2 1 1−α ? I dom (−∆D ) 2 = L , dom( −∆D ) 1−α = L , HD 1−α = HD1−α . From Extrapolation to Interpolation Goal (♠) dom (−∆D ) 1+α 2 ,→ HD1+α (Ω) for small α ∈ (0, 12 ). Lemma One gets (♠) if HD1−α (Ω) ,→ dom (−∆D ) 1−α 2 holds for α ∈ (0, 12 ). Observations I Reduces extrapolation result to interpolation result. p 2 2 1 1−α ? I dom (−∆D ) 2 = L , dom( −∆D ) 1−α = L , HD 1−α = HD1−α . I Main ingredient for interpolation result: Fractional Hardy Inequality Z |u(x)|2 1−α 2 dx . kuk (u ∈ H (Ω)). 1−α D 2(1−α) H (Ω) D Ω distD (x) The Main Result Summary 1+α 2 ,→ HD1+α (Ω). I For α > 0 small: dom (−∆D ) I Extrapolate Kato property for −∆D =⇒ Kato property for AD . The Main Result Summary 1+α 2 ,→ HD1+α (Ω). I For α > 0 small: dom (−∆D ) I Extrapolate Kato property for −∆D =⇒ Kato property for AD . Theorem Let Ω ⊆ Rd bounded Lipschitz domain and D a (d − 1)-set. Then p dom( AD ) = HD1 (Ω) and moreover, ( α HDα (Ω) α ∈ ( 12 , 1] dom((AD ) 2 ) = . 1 α H (Ω) α ∈ (0, 2 ) The Main Result Summary 1+α 2 ,→ HD1+α (Ω). I For α > 0 small: dom (−∆D ) I Extrapolate Kato property for −∆D =⇒ Kato property for AD . Theorem Let Ω ⊆ Rd bounded Lipschitz domain and D a (d − 1)-set. Then p dom( AD ) = HD1 (Ω) and moreover, ( α HDα (Ω) α ∈ ( 12 , 1] dom((AD ) 2 ) = . 1 α H (Ω) α ∈ (0, 2 ) Thank you for your attention!
© Copyright 2025 Paperzz