) ( )x ) ( )5

Name:
Name
Monomial
Examples
1. 3π‘₯ 4
2. π‘Ž2
3. 5
(one term)
degree:4
degree:2
degree:0
1. 2𝑛3 βˆ’ 𝑛
2. 𝑝 βˆ’ 3
3. βˆ’3π‘Ž3 𝑏4 + π‘Ž4 𝑏 5
Binomial
(two terms)
Trinomial
(three terms)
Polynomial
(one or more terms)
degree:3
degree:1
Non-Examples
1. 2π‘₯ βˆ’4
2. 5βˆšπ‘š
2
3. 3𝑑 3
1.
2π‘₯+1
π‘₯
degree:9
2. βˆšπ‘ 3 βˆ’ 2
1. βˆ’2π‘₯ 3 + 2π‘₯ βˆ’ 3
degree:3
1. π‘₯ βˆ’3 + 2π‘₯ βˆ’ 5
2. 𝑑(𝑑2 + 2𝑑 4 βˆ’ 2)
degree:5
2. 2π‘₯ + 3π‘₯ βˆ’ 5
degree:4
1. 3π‘ž3 +
1. 3π‘₯ 4 + 2π‘₯ 3 βˆ’ 5π‘₯ + 1
2. 5𝑦 6
3. 12π‘₯ 2 +√3 π‘₯3 βˆ’6π‘₯4 + 1π‘₯ βˆ’ 3
degree:6
degree:4
𝑝
π‘ž
2. 2π‘₯ + 3√π‘₯
1. EXPAND and SIMIPLIFY (Also, list the degree and leading coefficient of your answer).
b. (5x3 – 3x4 βˆ’ 2x – 9x2 – 2) + (3x3 +2x2 – 5x – 7)
a. (7x  3) ο€­ (2 ο€­ 2x)
d. ο€­ 23x  2 y  ο€­ 5x ο€­ 6 y   2 x ο€­ 7
c. 3( x  5)  8x

 

f. 2 x 3  5x ο€­ 8  5x 3 ο€­ 9 x 2 ο€­ 11x  5
g. 2 x  33x ο€­ 5

 
e. 2 x 2  5x ο€­ 6 x 2 ο€­ 2 x

h. 2 x ο€­ 5
2
M. Winking (Section 1-7)
p. 15
(1 Continued). EXPAND and SIMIPLIFY

i. 4 y 2 y 2  2 y

k. x  3x  5
j. - 6y 2 (3y 2 - 2y - 7)
l.
m.
Determine an expression that represents:
Determine an expression that represents:
Perimeter =
Perimeter =
Area =
Area =
2. Divide the following.
a.
32a 5  24a 3
8a 3
b.
21x 4  3x 3
3x 2
c.
36a 3d5  72a 2 d 3
6ad 2
3. Factor the GCF from each expression
a. 15x 4  3x 5
b. 16 x 2  24
b.
a.
c. 18x 4 y 7  36 x 3 y 6 ο€­ 42 x 5 y 5
c.
d. 3xx ο€­ 3  2x ο€­ 3
d.
M. Winking (Section 1-7)
p. 16