Name: Name Monomial Examples 1. 3π₯ 4 2. π2 3. 5 (one term) degree:4 degree:2 degree:0 1. 2π3 β π 2. π β 3 3. β3π3 π4 + π4 π 5 Binomial (two terms) Trinomial (three terms) Polynomial (one or more terms) degree:3 degree:1 Non-Examples 1. 2π₯ β4 2. 5βπ 2 3. 3π‘ 3 1. 2π₯+1 π₯ degree:9 2. βπ 3 β 2 1. β2π₯ 3 + 2π₯ β 3 degree:3 1. π₯ β3 + 2π₯ β 5 2. π(π2 + 2π 4 β 2) degree:5 2. 2π₯ + 3π₯ β 5 degree:4 1. 3π3 + 1. 3π₯ 4 + 2π₯ 3 β 5π₯ + 1 2. 5π¦ 6 3. 12π₯ 2 +β3 π₯3 β6π₯4 + 1π₯ β 3 degree:6 degree:4 π π 2. 2π₯ + 3βπ₯ 1. EXPAND and SIMIPLIFY (Also, list the degree and leading coefficient of your answer). b. (5x3 β 3x4 β 2x β 9x2 β 2) + (3x3 +2x2 β 5x β 7) a. (7x ο« 3) ο (2 ο 2x) d. ο 2ο¨3x ο« 2 y ο© ο ο¨5x ο 6 y ο© ο« 2 x ο 7 c. 3( x ο« 5) ο« 8x ο¨ ο© ο¨ ο© f. 2 x 3 ο« 5x ο 8 ο« 5x 3 ο 9 x 2 ο 11x ο« 5 g. ο¨2 x ο« 3ο©ο¨3x ο 5ο© ο¨ ο© ο¨ e. 2 x 2 ο« 5x ο 6 x 2 ο 2 x ο© h. ο¨2 x ο 5ο© 2 M. Winking (Section 1-7) p. 15 (1 Continued). EXPAND and SIMIPLIFY ο¨ i. 4 y 2 y 2 ο« 2 y ο© k. ο¨x ο« 3ο©ο¨x ο« 5ο© j. - 6y 2 (3y 2 - 2y - 7) l. m. Determine an expression that represents: Determine an expression that represents: Perimeter = Perimeter = Area = Area = 2. Divide the following. a. 32a 5 ο« 24a 3 8a 3 b. 21x 4 ο« 3x 3 3x 2 c. 36a 3d5 ο« 72a 2 d 3 6ad 2 3. Factor the GCF from each expression a. 15x 4 ο« 3x 5 b. 16 x 2 ο« 24 b. a. c. 18x 4 y 7 ο« 36 x 3 y 6 ο 42 x 5 y 5 c. d. 3xο¨x ο 3ο© ο« 2ο¨x ο 3ο© d. M. Winking (Section 1-7) p. 16
© Copyright 2026 Paperzz