4.3B The Unit Circle The unit circle is a way to "standardize" the special ratios of 0o ,30o ,45o ,60o ,90o ,120o ,135o ...etc. onto one diagram/memory aid. This is accomplished by using terminal arms in all quadrants that are 1 unit long (ie. r=1). For 45o (1,1) ( __ , __ ) ÷___ √2 1 1 45o 45o 1 sin 45o= cos 45o= tan 45o= NOTE: the coordinates are now (cos 45, sin 45) For 30o (√3,1) 2 60o 1 30o ÷___ ( __ , __ ) 1 60o 30o √3 sin 30o= cos 30o= tan 30o= NOTE: the coordinates are now (cos 30, sin 30) For 60o ( __ , __ ) ( 1,√3 ) ÷___ 30o 2 √3 1 30o 60o 60o 1 o sin 60 = cos 60o= tan 60o= Creating the Unit Circle: start with a circle where r=1 consider the terminal arm in each quadrant where the related angle is 45o consider the terminal arm in each quadrant where the related angle is 30o consider the terminal arm in each quadrant where the related angle is 600 NOTE: the coordinates are now (cos 60, sin 60) Ex. 1 Use the unit circle to determine the exact value of each of the following. a) sin 120o b) tan 240o c) cos 225o d) cos 315o f) sin 300o g) The Unit Circle *e) sin 310o sinθ cosθ = y x tanθ= Ex. 2 Use the unit circle to determine the measure of θ, for 0 ≤ θ ≤ 360o. sinθ = - √3 2 b) cos θ= 1 √2 c) tanθ = -√3 d) 1 sinθ= 2 The Unit Circle a) tan 120o
© Copyright 2025 Paperzz