π ππ» Roots and Real Exponents 0.4 Obj: simplify expressions in radical form and simplify expressions in exponential form. DOL: I will correctly solve 80% of problems Do Now: Simplify 2) βπ₯ 4 1) β50 n a 3) n = index 1 4) β3 3ο· 5 a = radicand Number and Types of Roots Odd index: 1 real root Even index, positive radicand: 2 real roots (± answer) Even index, negative radicand: 0 real roots Radicand of 0: 1 real root Find the roots 1) 4 81 2) 5) 6 1 3 6) 3 125 Of nth roots: Product Property: Quotient Property: n ab ο½ n a ο· n b n a ο½ b n a n b ο 125 3) 6 ο 729 4) ο 4 256 *When you find the even root of an even power and the result is an odd power, you must use the absolute value of the result to make sure that the answer is nonnegative.* Simplify 6 4 1) βπ18 4) 2) β81(π + 1)12 5 ββπ10 π 7 Definition of b1/n : b1/n = 5) n 3 3) β63π¦ 3 x3 7 6) 4 x8 3 b ; n > 1, except where b < 0 and n is even Definition of Rational Exponents: For any nonzero real number b and any integer m and n with n > 1 except when b < 0 and n is even b m n ο½ n bm ο½ ο¨ bο© m n π©π¨π°ππ« * π«π¨π¨π Write in radical form and simplify 10 1) β32 6 β2 3 3) 164 1 164 4 2) βπ₯ 21 π¦15 4 β25 4) 6 . β5 β Practice: Evaluate each expression. a) ββ81 4 b) β 16 6 c) ββ243 625 Simplify each expression 8 a) βπ 24 6 e) βπ₯ 31 π¦ 20 6 b) β64(π¦ + 2)30 1 1 1 3 c) β48π₯ 5 2 f) (2π₯ 4 π¦ 3 ) (3π₯ 4 π¦ 3 ) d) β 4 β27 g) 3 β81 5 π₯2
© Copyright 2026 Paperzz