A)169 B)144 C)121 D)100 ⇣ Math ⇣ p ⌘ ⇣ p ⌘ ⇣ p ⌘ p ⌘ 1431 45 13 58 35 13 19 19 17 A) LAB ; B) ; C) ; D) ; session 12 2 2 2 2 2 2 2 2 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 5 1 5 1 3 1 3 p ;p p ;p A) p6 ; pe and B) p7 ; pe and e e 6 7 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 3 1 3 1 5 1 5 p ;p p ;p C) p4 ; pe and D) p8 ; pe and e e 4 8 Quiz 20 Example 1: Use differentials to estimate the value (81.5) /4 sin °(31) 3 Example 2: A)169 B)144 C)121 D)100 ⇣ p ⌘ ⇣ p ⌘ ⇣ p ⌘ ⇣ p ⌘ A) 13 ; 245 B) 19 ; 213 C) 19 ; 258 D) 17 ; 235 2 2 2 2 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 5 1 5 1 3 1 3 p ; p p ; p A) p6 ; pe and B) p7 ; pe and e e 6 7 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 3 1 3 1 5 1 5 p ; p p ; p C) p4 ; pe and D) p8 ; pe and e e 4 8 3 (81.5) Use differentials to estimate the value/4 sin °(31) 12 dy Example 3: Find the differential (81.5)3/4 sin °(31) dy for y = 5x3 cos (x) y = 5x3 cos (x) Example 4: A spherical ball bearing will be coated by 0.03 cm of protective coating. If the radius of this ball bearing is 7 cm, approximately how much coating will be required? (use π≈3.14) 12 12 y = 5x cos (x) 1 10 Example 5: y = 5x3 cos (x) Give the derivative of earcsin (5x) 1 10 at the point where x = A)169 B)144 C)121 . D)100 ⇣ p ⌘ ⇣ p ⌘ ⇣ p ⌘ earcsin⇣(5x) p ⌘ 45 13 58 35 19 19 17 A) 13 ; B) ; C) ; D) ; 2 2 2 2 2 2 2 2 ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ A)169 B)144 C)121 D)100 1 5 1 5 1 3 1 3 p ;p B) p7 ; pe and ⇣ p ⌘ ⇣ p ⌘ A) ⇣p6 ;ppe⌘ and⇣ pp6⌘; pe e 7 45 13 58 35 19 19 17 A) 13 ; B) ; C) ; D) ; ⇣ 2 2 ⌘ ⇣2 2 ⌘ ⇣ ⌘ ⇣ ⌘ 2 2 2 2 1 3 1 5 1 5 ⇣ ⌘ ⇣ ⌘ C) ⇣p1 ; p3 ⌘ and⇣ ⌘ p ;p p ;p D) p8 ; pe and e e 41 p3e 43 8 p1 p5 p1 p5 p p1 p A) 6 ; e and ⇣ ⌘ ⇣ 1 3 C) p4 ; pe and 6 ; B) e p1 ; p3 e 4 (81.5)3/4 sin °(31) ⌘ 7 ; e and ⇣ 3/4 ⌘ ⇣ 1 5 (81.5) °(31) D) p8 ; psin and e 7 ; e p1 ; p5 e 8 ⌘ dy dy A)169 B)144 C)121 D)100 ⇣ p ⌘ ⇣ p ⌘ ⇣ p y⌘= 5x3 cos ⇣ (x)p ⌘ 45 13 58 13 19 19 1 A) 2 ; 2 B) 2 ; 2 C) 2 ; 2 x =D) 17 ; 235 2 10 1 ⇣ ⌘ x =⇣ 10 ⌘ ⇣ ⌘ ⇣ ⌘ 1 5 1 5 1 3 1 3 p ; p p ; p A) p6Question ; pe and# B) p7 ; pe and e e 6 arcsin (5x) 7 e ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ 1 p3 1 p3 1 p5 1 p5 p p p p C) 4Taking ; e and ; e,lnuse ; e lnand ; e 4.9 ln 5 ⇡ 1.609 4.9D) differentials to 5 estimate ⇡ 1.609 4 8 8 ln y = 5x3 cos (x) earcsin (5x) 81.5)3/4 sin °(31) 12 dy x= 12 y = 5x3 cos (x) 1 10 earcsin (5x) n 5 ⇡ 1.609 ln 4.9 Question # Consider the function f (x) = p x . Approximate the change in f as x changes from 8 to 9 12 12 D)100 p (x) ⇣= xp ⌘ ⌘ fExample ⇣ p ⌘ 6: 3 C) 19 ; 258 D) 17 ; 235 2 2 x 3 ⌘ lim 2⇣ ⌘ ⇣ ⌘ x!3 x 9 5 1 3 1 3 p p ; p B) p7 ; pe and e e 7 x 10 1 ⌘ lim ⇣ ⌘ ⇣ ⌘ 3 1 5 1 5 x!0 x p p ; p D) p8 ; pe and e e 8 3 + 3x 3ex lim x!0 7x(ex 1) ✓ ✓ ◆◆2x 11 lim cos x!1 x ✓ ◆ 5 5 im !0 x ln3(1 + x) y = 5x cos (x) 6 lim (ex + 1) /x x!1 (5x) earcsin 12 f (x) = p x x 3 x!3 x2 7: 9 Example lim 10x 1 lim x!0 x 3 + 3x 3ex lim x!0 7x(ex 1) ✓ ✓ ◆◆2x 11 lim cos x!1 x ✓ ◆ 5 5 im !0 x ln (1 + x) 6 lim (ex + 1) /x x!1 12 x 9 10x 1 lim 8: Example x!0 x 3 + 3x 3ex lim x!0 7x(ex 1) ✓ ✓ ◆◆2x 11 lim cos x!1 x ✓ ◆ 5 5 lim x!0 x ln (1 + x) 6 lim (ex + 1) /x x!1 12 3 + 3x 3ex lim x!0 7x(e Example 9: x 1) ✓ ✓ ◆◆2x 11 lim cos x!1 x ✓ ◆ 5 5 lim x!0 x ln (1 + x) 6 lim (ex + 1) /x x!1 12 ✓ ✓ ◆◆2x 11 lim cos Example 10: x x!1 ✓ ◆ 5 5 lim x!0 x ln (1 + x) 6 lim (ex + 1) /x x!1 12 ✓ 5 5 im x!0 Example x ln11: (1 + x) 6 lim (ex + 1) /x x!1 12 ◆ x 3 lim Question x!3 x2 #9 9x 1 lim x!0 5x 3 + 3x 3ex lim x!0 7x(ex 1) ✓ ✓ ◆◆2x 11 lim cos x!1 x ✓ ◆ 5 5 lim x!0 x ln (1 + x) lim (ex + 1) /x 6 x!1 12 Question # p 4 1 + x2 lim x!1 3x2 5x 4 tan (x) x!0 2 sin (x) 10x lim p 4 1 + x2 lim x!1 # 3x2 Question 5x 4 tan (x) x!0 2 sin (x) 10x lim
© Copyright 2026 Paperzz