Integration Strategy Calculus II Josh Engwer TTU 05 March 2014 Josh Engwer (TTU) Integration Strategy 05 March 2014 1/5 Relevant Trig Identities Memorize these: OPP ADJ OPP HYP , cos θ := HYP , tan θ := ADJ HYP ADJ csc θ := OPP , sec θ := HYP ADJ , cot θ := OPP csc θ = sin1 θ , sec θ = cos1 θ , cot θ = tan1 θ sin θ cos θ tan θ = cos θ , cot θ = sin θ 2 2 2 2 sin θ := sin θ + cos θ = 1, tan θ + 1 = sec θ, 1 + cot2 θ = csc2 θ sin (−θ) = − sin θ, cos (−θ) = cos θ sin (A + B) = sin A cos B + cos A sin B cos (A + B) = cos A cos B − sin A sin B sin (A − B) = sin A cos B − cos A sin B cos (A − B) = cos A cos B + sin A sin B sin (2θ) = 2 sin θ cos θ cos2 θ = 1+cos(2θ) , sin2 2 Josh Engwer (TTU) θ= 1−cos(2θ) 2 Integration Strategy 05 March 2014 2/5 Basic Integral Rules Memorize these: Z xn dx Z ex dx Z sin x dx Z sec2 x dx Z sec x tan x dx Z tan x dx Z sec x dx Josh Engwer (TTU) xn+1 = +C n+1 Z = ex + C = − cos x + C = tan x + C = sec x + C = ln | sec x| + C = ln | sec x + tan x| + C 1 dx Z x ax dx Z cos x dx Z csc2 x dx Z csc x cot x dx Z cot x dx Z csc x dx Integration Strategy = ln |x| + C = ax +C ln a = sin x + C = − cot x + C = − csc x + C = ln | sin x| + C = − ln | csc x + cot x| 05 March 2014 3/5 Integration Toolbox Algebraic Simplification Factoring Binomial Theorem/Pascal’s Triangle Rationalizing the Numerator (RN) Rationalizing the Denominator (RD) Clever insertion of one (CI-1) Clever insertion of zero (CI-0) Split Fraction (SF) Trig Identities (TRG) Reference Triangles Basic Integral Rules Change of Variables (CV) Integration by Parts (IBP) Partial Fraction Decomposition (PFD) Completing the Square (CS) Forms involving powers of √ trig functions√ √ Forms involving a2 − u2 , a2 + u2 , or u2 − a2 Josh Engwer (TTU) Integration Strategy 05 March 2014 4/5 Fin Fin. Josh Engwer (TTU) Integration Strategy 05 March 2014 5/5
© Copyright 2026 Paperzz