DTFT Theorems and Properties Property Notation: Linearity: Time shifting: Time reversal Convolution: Multiplication: Correlation: Time Domain x(n) x1 (n) x2 (n) a1 x1 (n) + a2 x2 (n) x(n − k) x(−n) x1 (n) ∗ x2 (n) x1 (n)x2 (n) rx1 x2 (l) = x1 (l) ∗ x2 (−l) Frequency Differentiation: Wiener-Khintchine: nx(n) rxx (l) = x(l) ∗ x(−l) Frequency Domain X(ω) X1 (ω) X1 (ω) a1 X1 (ω) + a2 X2 (ω) e−jωk X(ω) X(−ω) X1R(ω)X2 (ω) 1 2π 2π X1 (λ)X2 (ω − λ)dλ Sx1 x2 (ω) = X1 (ω)X2 (−ω) = X1 (ω)X2∗ (ω) [if x2 (n) real] j dX(ω) dω Sxx (ω) = |X(ω)|2 DTFT Symmetry Properties Time Sequence x(n) x∗ (n) x∗ (−n) x(−n) xR (n) jxI (n) x(n) real x0e (n) = 12 [x(n) + x∗ (−n)] x0o (n) = 21 [x(n) − x∗ (−n)] DTFT X(ω) X ∗ (−ω) X ∗ (ω) X(−ω) Xe (ω) = 21 [X(ω) + X ∗ (−ω)] Xo (ω) = 21 [X(ω) − X ∗ (−ω)] X(ω) = X ∗ (−ω) XR (ω) = XR (−ω) XI (ω) = −XI (−ω) |X(ω)| = |X(−ω)| ∠X(ω) = −∠X(−ω) XR (ω) jXI (ω) DFT Properties Property Notation: Periodicity: Linearity: Time reversal Circular time shift: Circular frequency shift: Complex conjugate: Circular convolution: Multiplication: Parseval’s theorem: Time Domain x(n) x(n) = x(n + N ) a1 x1 (n) + a2 x2 (n) x(N − n) x((n − l))N x(n)ej2πln/N x∗ (n) x1 (n) ⊗ x2 (n) x (n)x (n) P1 N −1 2 ∗ n=0 x(n)y (n) 1 Frequency Domain X(k) X(k) = X(k + N ) a1 X1 (k) + a2 X2 (k) X(N − k) X(k)e−j2πkl/N X((k − l))N X ∗ (N − k) X1 (k)X2 (k) 1 1 (k) ⊗ X2 (k) NX 1 PN −1 ∗ k=0 X(k)Y (k) N Note: The following tables are courtesy of Professors Ashish Khisti and Ravi Adve and were developed originally for ECE355. Please note that the notation used is different from that in ECE455. Fourier Properties Property DTFS Synthesis P Analysis 1 N Linearity x[n] = ak ejkΩ0 n k=<N > ak = −jkΩ0 n n=<N > x[n]e P αx[n] + βy[n] ↔ CTFS Time Shifting x[n − n0 ] ↔ ak e x(t) = ak ejkω0 t P∞ 1 2π k=−∞ 1 T R T R 2π αak + βbk x(t − t0 ) ↔ ak e x[n] = X(ejΩ )ejΩn dΩ 1 2π R ∞ x(t) = jωt X(jω)e dω −∞ = R ∞ X(jω)−jωt x(t)e dt −∞ αx[n] + βy[n] ↔ αx(t) + βy(t) ↔ αX(e −jkω0 t0 CTFT X(ejΩ ) = P∞ −jΩn −∞ x[n]e ak = x(t)e−jkω0 t dt αx(t) + βy(t) ↔ αak + βbk −j2πn0 k/N DTFT jΩ ) + βY (e −jΩn0 x[n − n0 ] ↔ e jΩ ) X(e αX(jω) + βY (jω) jΩ ) x(t − t0 ) ↔ e−jωt0 X(jω) Frequency Shift x[n]ej2πmn/N ↔ ak−m x(t)ejmω0 t ↔ ak−m x[n]ejΩ0 n ↔ X(ej(Ω−Ω0 )n ) x(t)ejω0 t ↔ X(j(ω − ω0 )) Conjugation x∗ [n] ↔ a∗−k x∗ (t) ↔ a∗−k x∗ [n] ↔ X ∗ (e−jΩ ) x∗ (t) ↔ X ∗ (−jω) Time Reversal x[−n] ↔ a−k x(−t) ↔ a−k x[−n] ↔ X(e−jΩ ) x(−t) ↔ X(−jω) x[n] ∗ y[n] ↔ X(ejΩ )Y (ejΩ ) x(t) ∗ y(t) ↔ X(jω)Y (jω) x[n]y[n] ↔ x(t)y(t) ↔ PN −1 Convolution x[r]y[n − r] ↔ N a k bk P −1 x[n]y[n] ↔ N r=0 ar bk−r r=0 R T x(τ )y(t − τ )dτ ↔ T ak bk x(t)y(t) ↔ ak ∗ bk Multiplication 1 2π First Difference/ Derivative Running Sum/ Integration Parseval’s Relation x[n] − x[n − 1] ↔ (1 − e−j2πk/N )ak Pn k=−∞ x[k] ↔ ak dx(t) dt Rt −∞ ↔ jkω0 ak x(τ )dτ ↔ PN −1 |x[n]|2 Pn=0 N −1 = k=0 |ak |2 1 N 1 |x(t)|2 dt TPT ∞ = k=−∞ |ak |2 R 2π X(ejθ )Y (ej(Ω−θ) )dθ x[n] − x[n − 1] ↔ (1 − e−jΩ )X(ejΩ ) ak jkω0 1−e−j2πk/N R Pn jΩ X(e ) x[k] ↔ 1−e −jΩ j0 +πX(e )δ(Ω) k=−∞ P∞ |x[n]|2 Rn=−∞ jΩ 2 1 = 2π 2π |X(e )| dΩ Real and even Real and even signals in frequency domain Real and odd Purely imaginary and odd signals in frequency domain 1 X(jω) 2π dx(t) dt ∗ Y (jω) ↔ jωX(jω) Rt x(τ )dτ ↔ X(jω) jω +πX(j0)δ(ω) R∞ |x(t)|2 dt −∞ R∞ 1 = 2π −∞ |X(jω)|2 dω −∞ Additional Property: A real-valued time-domain signal x(t) or x[n] will have a conjugate-symmetric Fourier representation. Notes: 1. For the CTFS, the signal x(t) has a period of T , fundamental frequency ω0 = 2π/T ; for the DTFS, the signal x[n] has a period of N , fundamental frequency Ω0 = 2π/N . ak and bk denote the Fourier coefficients of x(t) (or x[n]) and y(t) (or y[n]) respectively. 2. Periodic convolutions can be evaluated by summing or integrating over any single period, not just those indicated above. 3. The “Running Sum” formula for the DTFT above is valid for Ω in the range −π < Ω ≤ π. 2 Fourier Pairs Fourier Series Coefficients of Periodic Signals∗ Discrete-Time∗∗ Continuous-Time Time Domain – x(t) Frequency Domain – ak Time Domain – x[n] Frequency Domain – ak Aejω0 t a1 = A ak = 0, k 6= 1 AejΩ0 n a1 = A, ak = 0, k 6= 1 A cos(ω0 t) a1 = a−1 = A/2 ak = 0, k 6= 1 A cos(Ω0 n) a1 = a−1 = A/2 ak = 0, k 6= 1 A sin(ω0 t) A a1 = a∗−1 = 2j ak = 0, k 6= 1 A sin(Ω0 n) A a1 = a∗−1 = 2j ak = 0, k 6= 1 x(t) = A a0 = A, ak = 0 otherwise x[n] = A a0 = A, ak = 0 otherwise P∞ n=−∞ δ(t − nT ) ak = P∞ 1 T k=−∞ δ[n − kN ] ak = 1 N 2T1 T sin(kω0 T1 ) , k 6= 0 ak = kπ Periodic square wave 1 |t| < T1 x(t) = 0 T1 < |t| ≤ T2 a0 = and x(t) = x(t + T ) Fourier Transform Pairs Discrete-Time∗∗ Continuous-Time Time Domain – x(t) 1, |t| < T1 x(t) = 0, |t| > T1 sin W t πt Frequency Domain – X(jω) 2 sin(ωT1 ) ω 1, |ω| < W X(jω) = 0, otherwise Time Domain – x[n] 1, |n| ≤ N1 x[n] = 0, |n| > N1 sin W n πn Frequency Domain – X(ejΩ ) sin(Ω(N1 + 1/2)) sin(Ω/2) 1, |Ω| ≤ W jΩ X(e ) = 0, otherwise δ(t) 1 δ[n] 1 1 2πδ(ω) 1 + πδ(ω) jω 1 a + jω 1 (a + jω)n 1 2πδ(Ω) 1 + πδ(Ω) 1 − e−jΩ 1 1 − ae−jΩ 1 (1 − ae−jΩ )r u(t) e−at u(t), Re(a) > 0 tn−1 −at e u(t), Re(a) > 0 (n − 1)! u[n] an u[n], |a| < 1 (n + r − 1)! n a u[n], |a| < 1 n!(r − 1)! ∗ In the Fourier series table, ω0 = 2π and Ω0 = 2π , where T and N are the periods of x(t) and x[n] respectively. T N For the DTFS, ak is given only for k in the range −N/2 + 1 ≤ k ≤ N/2 for even N , −(N − 1)/2 ≤ k ≤ (N − 1)/2 for odd N , and ak = ak+N ; for the DTFT X(ejΩ ) is given only for Ω in the range −π < Ω ≤ π, and X(ejΩ ) = X(ej(Ω+2π) ). ∗∗ Fourier Transform for Periodic Signals: x(t) = ∞ X k=−∞ x[n] = X ∞ X ak ejkω0 t ↔ X(jω) = 2π ak δ(ω − kω0 ) k=−∞ ak ejkΩ0 n ↔ X(ejΩ ) = 2π k=<N > ∞ X k=−∞ 3 ak δ(Ω − kΩ0 ) Common z-Transform Pairs 1 2 3 Signal, x(n) δ(n) u(n) an u(n) 4 5 nan u(n) −an u(−n − 1) 6 −nan u(−n − 1) 7 cos(ω0 n)u(n) 8 sin(ω0 n)u(n) 9 n a cos(ω0 n)u(n) 10 an sin(ω0 n)u(n) z-Transform, X(z) 1 1 1−z −1 1 1−az −1 az −1 (1−az −1 )2 1 1−az −1 az −1 (1−az −1 )2 1−z −1 cos ω0 1−2z −1 cos ω0 +z −2 z −1 sin ω0 1−2z −1 cos ω0 +z −2 1−az −1 cos ω0 1−2az −1 cos ω0 +a2 z −2 1−az −1 sin ω0 1−2az −1 cos ω0 +a2 z −2 ROC All z |z| > 1 |z| > |a| |z| > |a| |z| < |a| |z| < |a| |z| > 1 |z| > 1 |z| > |a| |z| > |a| z-Transform Properties Property Notation: Linearity: Time shifting: Time Domain x(n) x1 (n) x2 (n) a1 x1 (n) + a2 x2 (n) x(n − k) z-Domain X(z) X1 (z) X2 (z) a1 X1 (z) + a2 X2 (z) z −k X(z) z-Scaling: Time reversal Conjugation: z-Differentiation: Convolution: an x(n) x(−n) x∗ (n) n x(n) x1 (n) ∗ x2 (n) X(a−1 z) X(z −1 ) X ∗ (z ∗ ) −z dX(z) dz X1 (z)X2 (z) 4 ROC ROC: r2 < |z| < r1 ROC1 ROC2 At least ROC1 ∩ ROC2 At least ROC, except z = 0 (if k > 0) and z = ∞ (if k < 0) |a|r2 < |z| < |a|r1 1 < |z| < r12 r1 ROC r2 < |z| < r1 At least ROC1 ∩ ROC2
© Copyright 2026 Paperzz