1"35/&3"-5&3/"5034
-4"1PMF
&MFDUSJDBMBOENFDIBOJDBMEBUB
HQJ
©L7")[
©L7")[
/6$3ROH
63(&,$//<$'$37(')25$33/,&$7,216
7KH/6$DOWHUQDWRULVGHVLJQHGWREHVXLWDEOHIRUW\SLFDOJHQHUDWRUDSSOLFDWLRQVVXFKDVEDFNXS
VWDQGDUGSURGXFWLRQFRJHQHUDWLRQPDULQHDSSOLFDWLRQVUHQWDOWHOHFRPPXQLFDWLRQVHWF
&203/,$17:,7+,17(51$7,21$/67$1'$5'6
7KH/6$DOWHUQDWRUFRQIRUPVWRWKHPDLQLQWHUQDWLRQDOVWDQGDUGVDQGUHJXODWLRQV
,(&1(0$0*,62&6$8/RQUHTXHVWPDULQHUHJXODWLRQVHWF
,WFDQEHLQWHJUDWHGLQWRD&(PDUNHGJHQHUDWRU
7KH/6$LVGHVLJQHGPDQXIDFWXUHGDQGPDUNHWHGLQDQ,62DQG,62HQYLURQPHQW
7232)7+(5$1*((/(&75,&$/3(5)250$1&(
&ODVV+LQVXODWLRQ
6WDQGDUGZLUHUHFRQQHFWDEOHZLQGLQJSLWFKW\SHQR
9ROWDJHUDQJH99DQG999+]99DQG99+]
+LJKHI¿FLHQF\DQGPRWRUVWDUWLQJFDSDFLW\
2WKHUYROWDJHVDUHSRVVLEOHZLWKRSWLRQDODGDSWHGZLQGLQJV
+]9QR9QR9QR9QRRU
+]9DQG9QR9QR
7+'7RWDOKDUPRQLFGLVWRUWLRQIXOOORDG
5LQWHUIHUHQFHVXSSUHVVLRQFRQIRUPLQJWRVWDQGDUG(1JURXSFODVV%VWDQGDUGIRU(XURSHDQ]RQH&(PDUNLQJ
(;&,7$7,21$1'5(*8/$7,216<67(068,7('727+($33/,&$7,21
([FLWDWLRQV\VWHP
5HJXODWLRQRSWLRQV
9ROWDJH
UHJXODWRU
6+817
$5(3
30*
&XUUHQWWUDQVIRUPHU
IRUSDUDOOHOLQJ
5
0DLQV
SDUDOOHOLQJ
5
SKDVH
VHQVLQJ
SKDVHVHQVLQJRQ
PDLQVSDUDOOHOLQJ
XQEDODQFHG
5HPRWH
YROWDJH
SRWHQWLRPHWHU
5
6WG
3
5
RSWLRQDO
6WG
6WG
3
3
3
3
3
'
RSWLRQDO RSWLRQDO RSWLRQDO
3
LQFOXGHG
9ROWDJHUHJXODWRUDFFXUDF\
7,
5
LQFOXGHG FRQWDFWIDFWRU\
3
3
3SRVVLEOHPRXQWLQJ
3527(&7,216<67(068,7('727+((19,5210(17
7KH/6$LV,3
6WDQGDUGZLQGLQJSURWHFWLRQIRUFOHDQHQYLURQPHQWVZLWKUHODWLYHKXPLGLW\LQFOXGLQJLQGRRUPDULQHHQYLURQPHQWV
2SWLRQV)LOWHUVRQDLULQOHWGHUDWLQJ
)LOWHUVRQDLULQOHWDQGDLURXWOHW,3GHUDWLQJ
:LQGLQJSURWHFWLRQVIRUKDUVKHQYLURQPHQWVDQGUHODWLYHKXPLGLW\JUHDWHUWKDQ
6SDFHKHDWHUV
7KHUPDOSURWHFWLRQIRUZLQGLQJVDQGVKLHOGV
5(,1)25&('0(&+$1,&$/6758&785(86,1*),1,7((/(0(1702'(//,1*
&RPSDFWDQGULJLGDVVHPEO\WREHWWHUZLWKVWDQGJHQHUDWRUYLEUDWLRQV
6WHHOIUDPH
&DVWLURQÀDQJHVDQGVKLHOGV
7ZLQEHDULQJDQGVLQJOHEHDULQJYHUVLRQVGHVLJQHGWREHVXLWDEOHIRUHQJLQHVRQWKHPDUNHW
+DOINH\EDODQFLQJ
*UHDVHGIRUOLIHEHDULQJVUHJUHDVDEOHEHDULQJVRSWLRQDO
$&&(66,%/(7(50,1$/%2;3523257,21(')25237,21$/(48,30(17
(DV\DFFHVVWRWKHYROWDJHUHJXODWRUDQGWRWKHFRQQHFWLRQV
3RVVLEOHFOXVLRQRIDFFHVVRULHVIRUSDUDOOHOLQJSURWHFWLRQDQGPHDVXUHPHQW
ZD\WHUPLQDOEORFNIRUUHFRQQHFWLQJYROWDJHUHFRQQHFWLRQ
&RS\ULJKW027(856/(52<620(5
3URGXFWVDQGPDWHULDOVVKRZQLQWKLVFDWDORJXHPD\DWDQ\WLPHEHPRGL¿HGLQRUGHUWRIROORZWKHODWHVWWHFKQRORJLFDOGHYHORSPHQWVLPSURYHWKHGHVLJQRUFKDQJH
FRQGLWLRQVRIXWLOL]DWLRQ7KHLUGHVFULSWLRQFDQQRWLQDQ\FDVHHQJDJH/(52<620(5OLDELOLW\7KHYDOXHVLQGLFDWHGDUHW\SLFDOYDOXHV
/6$3ROH
&RPPRQGDWD
,QVXODWLRQFODVV
:LQGLQJSLWFK
7HUPLQDOV
'ULSSURRI
$OWLWXGH
2YHUVSHHG
$LUÀRZ
+
1
,3
)P
PLQ
PV+]+]
([FLWDWLRQV\VWHP
$95PRGHO
9ROWDJHUHJXODWLRQ
6XVWDLQHGVKRUWFLUFXLWFXUUHQW
7RWDOH+DUPRQLFGLVWRUWLRQ7+'
:DYHIRUP1(0$ 7,)
6+817
$5(3RU30*
5
5
,1V
DWQRORDGRQORDG
6WHDG\VWDWHGXW\7RWDOKDUPRQLFGLVWRUWLRQFRQWHQWOLQHWROLQHDWQRORDGRUIXOOUDWHGOLQHDUDQGEDODQFHGORDG
5DWLQJV+]530
N9$N:3RZHUIDFWRU 'XW\7&
&RQWLQXRXVGXW\&
&ODVV7.
+.
3KDVH
SK
SK
9 9 9 9 66
<
9 9 9
9
6
9
<<
&RQWLQXRXVGXW\&
).
SK
SK
9 9 9 9 66
6WDQGE\&
+.
SK
SK
9 9 9 9 66
6WDQGE\&
+.
SK
SK
9 9 9 9 66
9 9 9
9 9 9
9 9 9
9
9
9
9
9
9
N9$
N:
0
N9$
N:
/
N9$
N:
N9$
N:
N9$
N:
0
/
9/
5DWLQJV+]530
N9$N:3RZHUIDFWRU 'XW\7&
&RQWLQXRXVGXW\&
&ODVV7.
+.
3KDVH
SK
SK
9 9 9 9 66
<
9 9
9
6
9 9 9
<<
&RQWLQXRXVGXW\&
).
SK
SK
9 9 9 9 66
6WDQGE\&
+.
SK
SK
9 9 9 9 66
6WDQGE\&
+.
SK
SK
9 9 9 9 66
9 9
9 9
9 9
9
9 9 9
9
9 9 9
9
9 9 9
N9$
N:
N9$
N:
/
N9$
N:
/
N9$
N:
N9$
N:
0
0
9/
/6$3ROH
(I¿FLHQFLHV+]3)3)
LSA 46.2 L9
LSA 46.2 M3
96%
96%
94,9
94
95,4
94,5
93,5
92
93
93,5
P.F. : 0,8
92,7
92
92,2
92
91,2
91,3
90
95,2
94,9
94
91,7 P.F. : 0,8
92,5
92,8
P.F. : 1
95,3
94,6 P.F. : 1
94,6
90
90,8
88
88
20
40
60
100 120 140 160 180 200 220kVA
80
40
80
120
160
200
P.F. : 1
95
95,2
93,2
95,2
94
93,7
92
93,5
91,6
92
91,2
P.F. : 0,8
94,1
93,9
92,4
92,3
93
92,3
95,7
95,7
94,8
P.F. : 0,8
92
320kVA
P.F. : 1
95,7
96%
94
280
LSA 46.2 VL12
LSA 46.2 M5
96%
94,8
240
90
90
88
88
20
40
60
100 120 140 160 180 200 220kVA
80
40
80
120
160
200
240
280
320
360kVA
LSA 46.2 L6
96%
95
95,2
94,9
94
93,3
92,5
92
P.F. : 1
94,8
92,4
93,1
P.F. : 0,8
92
91,4
90
88
40
80
120
160
200
240
280kVA
5HDFWDQFHV7LPHFRQVWDQWVPV&ODVV+9
0
0
/
/
.FF
6KRUWFLUFXLWUDWLR
9/
;G
'LUHFWD[LVV\QFKURUHDFWDQFHXQVDWXUDWHG
;T
4XDGUDD[LVV\QFKUUHDFWDQFHXQVDWXUDWHG
7¶GR
2SHQFLUFXLWWLPHFRQVWDQW
;¶G
'LUHFWD[LVWUDQVLHQWUHDFWDQFHVDWXUDWHG
7¶G
6KRUW&LUFXLWWUDQVLHQWWLPHFRQVWDQW
;´G
'LUHFWD[LVVXEWUDQVLHQWUHDFWDQFHVDWXUDWHG
7´G
6XEWUDQVLHQWWLPHFRQVWDQW
;´T
4XDGUDD[LVVXEWUDQVLHQWUHDFWDQFHVDWXUDWHG
;R
=HURVHTXHQFHUHDFWDQFHXQVDWXUDWHG
;
1HJDWLYHVHTXHQFHUHDFWDQFHVDWXUDWHG
7D
$UPDWXUHWLPHFRQVWDQW
2WKHUGDWD&ODVV+9
LR$
LF$
XF9
1RORDGH[FLWDWLRQFXUUHQW6+817$5(3RU30*
)XOOORDGH[FLWDWLRQFXUUHQW6+817$5(3RU30*
)XOOORDGH[FLWDWLRQYROWDJH6+817$5(3RU30*
PV
5HFRYHU\WLPH6 WUDQV
N9$
0RWRUVWDUW6 VXVWRU6 WUDQV6+817
N9$
0RWRUVWDUW6 VXVWRU6 WUDQV$5(3
7UDQVLHQWGLSUDWHGVWHSORDG6+8173)/$*
7UDQVLHQWGLSUDWHGVWHSORDG$5(33)/$*
:
1RORDGORVVHV
:
+HDWUHMHFWLRQ
/6$3ROH
7UDQVLHQWYROWDJHYDULDWLRQ9+]
Load application (SHUNT excitation)
Load application (AREP or PMG excitation)
M3
25 %
25 %
M5
M3
M5
L6
20
L9
15
VL12
10
% Voltage dip
% Voltage dip
20
5
L6
L9
15
VL12
10
5
0
0
0
50
100
150
200
250
300
350 kVA
0
50
kVA at Ø 0,8 power factor
100
150
200
250
300
350 kVA
kVA at Ø 0,8 power factor
Load rejection (SHUNT excitation)
Load rejection (AREP or PMG excitation)
M3
25%
M5
M3
25%
M5
L6
L6
20
L9
15
VL12
10
% Voltage rise
% Voltage rise
20
5
L9
15
VL12
10
5
0
0
0
50
100
150
200
250
300
350 kVA
0
kVA at Ø 0,8 power factor
150
200
250
300
350 kVA
Motor starting (AREP or PMG excitation)
L6
VL12
L9
M3
30%
30%
25
25
20
20
% Voltage dip
% Voltage dip
M5
100
kVA at Ø 0,8 power factor
Motor starting (SHUNT excitation)
M3
50
15
L6
L9
VL12
15
10
10
5
5
0
M5
0
0
100
200
300
400
500
600
700
kVA at Ø 0,6 power factor locked rotor
800kVA
0
100 200 300 400 500 600 700 800 900kVA
kVA at Ø 0,6 power factor locked rotor
1 ) For a starting P.F. differing from 0,6 , the starting kVA must be multiplied by (Sine Ø /0,8)
2 ) For voltages other than 400V(Y) , 230V(D) at 50 Hz, then kVA must be multiplied by (400/U)2 or (230/U)2.
/6$3ROH
(I¿FLHQFLHV+]3)3)
LSA 46.2 M3
LSA 46.2 L9
96%
96%
94,7
94,8
94
94,6
95,2
93,3 P.F. : 0,8
93,6
92,1
92,7
92,6
92
95,2
94,4
94
94,2
P.F. : 1
95,3
P.F. : 1
93,2
P.F. : 0,8
93
92
91,7
91,1
90
90
90
88
91
90,2
88
40
80
120
160
200
240
280kVA
60
100
140
180
92
94,9
92,7
93,2
90
93,9
94,6
94
94,1
93,6
P.F. : 0,8
380kVA
P.F. : 0,8
93,8
92
92,4
91,3
340
95,6
95,5
95
93
300
95,7 P.F. : 1
96%
P.F. : 1
95
94,4
260
LSA 46.2 VL12
LSA 46.2 M5
96%
94
220
90,3
90
91,2
90,5
88
88
40
80
120
160
200
240
60
280kVA
100
140 180
220
260
300 340
380 420kVA
LSA 46.2 L6
96%
95
95
94
P.F. : 1
94,9
94,3
P.F. : 0,8
92,8
93,2
93
92
92,5
91,1
90
90,2
88
60
100
140
180
220
260
300
340kVA
5HDFWDQFHV7LPHFRQVWDQWVPV&ODVV+9
0
0
/
/
.FF
6KRUWFLUFXLWUDWLR
9/
;G
'LUHFWD[LVV\QFKURUHDFWDQFHXQVDWXUDWHG
;T
4XDGUDD[LVV\QFKUUHDFWDQFHXQVDWXUDWHG
7¶GR
2SHQFLUFXLWWLPHFRQVWDQW
;¶G
'LUHFWD[LVWUDQVLHQWUHDFWDQFHVDWXUDWHG
7¶G
6KRUWFLUFXLWWUDQVLHQWWLPHFRQVWDQW
;´G
'LUHFWD[LVVXEWUDQVLHQWUHDFWDQFHVDWXUDWHG
7´G
6XEWUDQVLHQWWLPHFRQVWDQW
;´T
4XDGUDD[LVVXEWUDQVLHQWUHDFWDQFHVDWXUDWHG
;R
=HURVHTXHQFHUHDFWDQFHXQVDWXUDWHG
;
1HJDWLYHVHTXHQFHUHDFWDQFHVDWXUDWHG
7D
$UPDWXUHWLPHFRQVWDQW
2WKHUGDWD&ODVV+9
LR$
1RORDGH[FLWDWLRQFXUUHQW6+817$5(3RU30*
LF$
)XOOORDGH[FLWDWLRQFXUUHQW6+817$5(3RU30*
XF9
)XOOORDGH[FLWDWLRQYROWDJH6+817$5(3RU30*
PV
5HFRYHU\WLPH6 WUDQV
N9$
0RWRUVWDUW6 VXVWRU6 WUDQV6+817
N9$
0RWRUVWDUW6 VXVWRU6 WUDQV$5(3
7UDQVLHQWGLSUDWHGVWHSORDG6+8173)/$*
7UDQVLHQWGLSUDWHGVWHSORDG$5(33)/$*
:
1RORDGORVVHV
:
+HDWUHMHFWLRQ
/6$3ROH
7UDQVLHQWYROWDJHYDULDWLRQ9+]
Load application (SHUNT excitation)
Load application (AREP or PMG excitation)
M3
25 %
25 %
M3
M5
M5
L6
20
% Voltage dip
% Voltage dip
20
L9
15
VL12
10
5
L6
L9
15
VL12
10
5
0
0
0
50
100 150 200 250 300
350 400 kVA
0
50
kVA at Ø 0,8 power factor
100 150 200 250 300
350 400 kVA
kVA at Ø 0,8 power factor
Load rejection (SHUNT excitation)
Load rejection (AREP or PMG excitation)
M3
25%
M5
M3
25%
L6
L6
20
% Voltage rise
% Voltage rise
20
L9
15
VL12
10
L9
15
VL12
10
5
5
0
0
0
50
100 150 200 250 300
0
350 400 kVA
kVA at Ø 0,8 power factor
M3
30%
M5
50
100 150 200 250 300 350 400 kVA
kVA at Ø 0,8 power factor
Motor starting (SHUNT excitation)
Motor starting (AREP or PMG excitation)
L6
L9
M3
VL12
25
25
20
20
15
L6
L9
VL12
15
10
10
5
5
0
M5
30%
% Voltage dip
% Voltage dip
M5
0
0
100 200 300 400 500 600 700 800 900 kVA
kVA at Ø 0,6 power factor locked rotor
0
100 200 300 400 500 600 700 800 900 10001100kVA
kVA at Ø 0,6 power factor locked rotor
1) For a starting P.F. differing from 0,6 , the starting kVA must be multiplied by (Sine Ø /0,8)
2) For voltages other than 480V(Y), 277V(D), 240V(YY) at 60 Hz, then kVA must be multiplied by (480/U)2 or
(277/U)2 or (240/U)2
/6$3ROH
SKDVHVKRUWFLUFXLWFXUYHVDWQRORDGDQGUDWHGVSHHGVWDUFRQQHFWLRQ<
10000
Symmetrical
Asymmetrical
Current (A)
LSA 46.2 M3
1000
AREP or PMG
100
SHUNT
10
1
10
100
1000
10000
time (ms)
10000
Symmetrical
Asymmetrical
LSA 46.2 M5
Current (A)
1000
AREP or PMG
100
SHUNT
10
1
10
100
1000
10000
time (ms)
10000
Symmetrical
Asymmetrical
LSA 46.2 L6
1000
Current (A)
AREP or PMG
100
SHUNT
10
1
,QÀXHQFHGXHWRFRQQH[LRQ
10
&XUYHVVKRZQDUHIRUVWDUFRQQHFWLRQ<
)RURWKHUFRQQHFWLRQVXVHWKHIROORZLQJPXOWLSOLFDWLRQIDFWRUV
6HULHVGHOWD&XUUHQWYDOXH[
3DUDOOHOVWDU&XUUHQWYDOXH[
100
1000
10000
time (ms)
/6$3ROH
SKDVHVKRUWFLUFXLWFXUYHVDWQRORDGDQGUDWHGVSHHGVWDUFRQQHFWLRQ<
10000
Symmetrical
Asymmetrical
LSA 46.2 L9
AREP or PMG
Current (A)
1000
100
SHUNT
10
1
10
100
1000
10000
time (ms)
10000
Symmetrical
Asymmetrical
LSA 46.2 VL12
AREP or PMG
Current (A)
1000
100
SHUNT
10
1
10
100
1000
10000
time (ms)
,QÀXHQFHGXHWRVKRUWFLUFXLW
&XUYHVDUHEDVHGRQDWKUHHSKDVHVKRUWFLUFXLW
)RURWKHUW\SHVRIVKRUWFLUFXLWXVHWKHIROORZLQJPXOWLSOLFDWLRQIDFWRUV
SKDVH
SKDVH//
SKDVH/1
,QVWDQWDQHRXV0D[
6XVWDLQHG
0D[VXVWDLQHGGXUDWLRQ$5(330*
VHF
VHF
VHF
/6$3ROH
6LQJOHEHDULQJGLPHQVLRQV
L
Access to terminals
LB
AH
566
Xg
33
568
15°
Access to regulator
Optional cable
output
CF
13
485
Standard cable
output
AIR OUTLET
185
6
6
)UDPHGLPHQVLRQV
7<3(
/6$0
/6$0
2 holes
Ø 21
170
765
17
Ø 206
77
AIR
INLET
80
457
527
235
Access to rotating diodes
C
0
S DIA. Qty 12 as
shown on Ø M
Y DIA, Qty X Eq. Sp. on Ø U.
/PD[ZLWKRXW30*
/%
;J
&
:HLJKWNJ
&RXSOLQJ
)OH[SODWH
/6$/
)ODQJH6$(
;
)ODQJH6$(
;
/6$9/
)ODQJH6$(
1
0
6
5
&)
)OH[SODWHPP
6$(
%;
;
)ODQJH6$(
/6$/
)ODQJHPP
6$(
3
280 - 1
Ø 235
Ø 512
- 0,050
Ø BX - 0,100
ØP
0
Ø N - 0,127
PMG optional
;
;
8
;
<
$+
GLPHQVLRQV/6$0
7RUVLRQDODQDO\VLVGDWD
Ø 75
Ø 110
Ø 115
Ø 120
Ø 104(46.2 M)
Ø 106(46.2 L)
Ø 115
Ø 100
Ø 75
Xr
Lr
*UDYLW\FHQWHU;UPP5RWRUOHQJWK/UPP:HLJKW0NJ0RPHQWRILQHUWLD-NJP- 0'
)OH[SODWH6$(
)OH[SODWH6$(
7<3(
;U
/U
0
;U
/U
/6$0
0
-
/6$0
/6$/
/6$/
/6$9/
/6$3ROH
7ZREHDULQJGLPHQVLRQV
L
Access to terminals
LB
105
Optional cable
output
15°
485
Standard cable
output
B
AIR OUTLET
145
6
)UDPHGLPHQVLRQV
7<3(
/6$0
BB
C
6 holes Ø 21
/PD[ZLWKRXW30*
/%
765
0
20
Ø 512
Ø 235
12
17
79,5
77
AIR
INLET
235
3
280 - 1
+ 0,030
PMG optional
Ø 75 + 0,011
0
ØP
568
33 Access to regulator
566
20
1 hole M20x42
Ø 511,175 - 0,127
Xg
80
457
527
Access to
rotating diodes
M10 DIA, Qty 12 Eq. as shown
on Ø 530,225
&
%%
%
5
:HLJKWNJ
;J
/6$0
/6$/
/6$/
/6$9/
7RUVLRQDODQDO\VLVGDWD
Xr
Ø 75
Ø 110
Ø 115
Ø 104(46.2 M)
Ø 106(46.2 L)
Ø 120
Ø 115
Ø 92
Ø 80
Ø 75
105
Lr
*UDYLW\FHQWHU;UPP5RWRUOHQJWK/UPP:HLJKW0NJ0RPHQWRILQHUWLD-NJP- 0'
7<3(
;U
/U
0
/6$0
-
/6$0
/6$/
/6$/
/6$9/
© Copyright 2026 Paperzz