Class Notes: SM-7 Reduced Row Echelon Form Goal: Solve systems of equations with matrices x − 2y + z = 7 3 x − 5 y + z = 14 is equivalent to 2x − 2 y − z = 3 ⎡1 −2 1 7 ⎤ ⎢ 3 −5 1 14 ⎥ ⎢ ⎥ ⎢⎣ 2 −2 −1 3 ⎥⎦ x − 2y + z = 7 ⎡ 1 −2 1 7 ⎤ ⎢ 0 1 −2 −7 ⎥ is equivalent to y − 2 z = −7 Row Echelon Form ⎢ ⎥ ⎢⎣ 0 0 1 3 ⎥⎦ z =3 ⎡1 0 0 2 ⎤ ⎢ 0 1 0 −1⎥ is equivalent to ⎢ ⎥ ⎢⎣ 0 0 1 3 ⎥⎦ x=2 y = −1 This would be ideal – Reduced Row Echelon Form. z =3 Reduced Row Echelon Form is unique. ⎡ 1 −2 1 7 ⎤ ⎢ 3 −5 1 14 ⎥ ⎢ ⎥ ⎢⎣ 2 −2 −1 3 ⎥⎦ Find the reduced row echelon form for each system. Write the solution to the system. Example 1: x − 2 y + z = −2 2x − 3y + 2z = 2 4 x − 8 y + 5 z = −5 Example 2: x + 3z = 5 y − 2 z = −2 Interpreting Reduced Row Echelon Form Write the solution to the following systems ⎡1 −3 1 4 ⎤ ⎢ 0 −1 −4 7 ⎥ ⎢ ⎥ ⎢⎣ 0 0 0 5 ⎥⎦ ⎡1 ⎢0 ⎢ ⎢0 ⎢ ⎣0 0 1 2 1⎤ 1 −2 −1 −1⎥⎥ 0 0 0 0⎥ ⎥ 0 0 0 0⎦
© Copyright 2025 Paperzz