Phase Equilibrium in Amino Acid Salt Systems for CO2 Capture Louise With Sengeløv and Kaj Thomsen ([email protected]) Porsgrunn, February 3rd 2011 Outline Introduction Carbonate‐ Methionine system Comparison of absorbents • General introduction • Experimental data for amino acid salt systems • Methionine as a case study • Equilibrium constants • Vapor‐Liquid equilibrium data • Freezing point depression data • Thermodynamic modelling • Absorber conditions • Desorber conditions • Heat of desorption • Conclusion 2 Introduction Advantages in using amino acid salts instead of alkanolamines: • Might be less prone to degradation in oxygen rich environments • Less volatile than alkanolamines due to their ionic nature • Same affinity towards CO2 as alkanolamines • Form carbamates Amino acids participate in the transportation of CO2 in the blood by the formation of carbamate Problems and drawbacks: • More expensive • Limited solubility of amino acids in water • Limited amount of experimental data available in literature 3 Experimental data for amino acid salt solutions • CO2 Equilibrium data – – – – – • Potassium taurate – Kumar et al. (2003) 38 data points, T=25 and 40°C Potassium glycinate (Portugal et al. 2009) 103 data points, T= 20‐50°C Potassium methionate (Kumelan et al. 2010) 65 data points, T= 80‐120°C Potassium sarcosinate (Aronu et al. 2010) graph with 55 points, T=40‐120°C Potassium prolinate (unpublished, DTU, UTwente) Absorption kinetics – Kumar et al. (2003) (potassium salt of taurine and glycine) – Van Holst et al. 2009 (potassium salts of 7 different amino acids) – Prakash et al. 2010 (potassium salts of taurine and glycine) • Equilibrium constants – Sharma et al. 2003 – Hamborg et al. 2007 • • Heat capacity and other thermal properties ‐ none Freezing point depression data – Sengeløv (2010) (loaded and unloaded potassium salt of methionine) 20 data points ‐14 to 0°C 4 Methionine, C5H11NO2S • • • • • Molar mass 149.21 g/mol Decomposition temperature 281°C Solubility in water at 25°C: 0.38 molal pKa 2.28 and 9.21 Found in cereal grains and in nuts 5 Iso‐electric point of methionine 1 Isoelectric point: 5,74 0,9 0,8 0,7 0,6 pKa=9,21 pKa=2,28 0,5 0,4 0,3 0,2 0,1 0 0 2 4 6 8 10 12 pH 6 Solubility of methionine in water O and in NaCl solution X Hill and Robson, Biochemical Journal, 28(1934)1008‐1013 7 Potassium salt of methionine – Equilibrium constants • Sharma VK; Zinger A; Millero FJ; De Stefano C; Dissociation constants of protonated methionine species in NaCl media, Biophysical Chemistry, 105(2003)79‐87 – Determined in temperature range 5 – 45°C • Hamborg ES; Niederer JPM; Versteeg GF; Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K, J. Chem. Eng. Data, 52(2007)2491‐2502 – Determined in temperature range 20 – 80°C • Equilibrium constant for the carbamate formation of methionine not available • Equilibrium constant for the protonated form of methionine not relevant at pH above 6 8 Potassium salt of methionine – experimental data • Kumelan J, Pérez‐Salado Kamps A, Maurer G, Solubility of CO2 in Aqueous Solutions of Methionine and in Aqueous Solutions of (K2CO3 + Methionine), Ind. & Eng. Chem. Res. 49(2010)3910‐3918 – VLE‐data for the system CO2‐H2O‐K2CO3‐Methionine at 80‐120°C – It corresponds to loaded solutions of potassium salt of methionine – Some precipitation in experiments at 80°C with 2.5 molal K2CO3 and 0.83 molal methionine • Sengeløv L., Bachelor Thesis, Technical University of Denmark, 2010 – Freezing point depression data for potassium salt of methionine and for loaded solutions of this salt 9 10 Kumelan et al. (2010), 353K Extended UNIQUAC Extended UNIQUAC, CO2 in water 9 8 (Eq. constant from Sharma et al.) Total pressure in MPa 6 Without K2CO3 5 4 353.15 K 3 m(Met)=0.4826 mol/(kg H2O) 2 1 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 m(CO2) in mol/(kg H2O) 10 Kumelan et al. (2010), 353K 0.83 molal Methionine 2.5 molal K2CO3 9 Extended UNIQUAC 353.1 K 8 Total pressure in MPa Results for the CO2‐H2O‐ K2CO3‐ Methionine system 7 7 Extended UNIQUAC 353.1 K without methionine 6 Kumelan et al. (2010), 373K 5 Extended UNIQUAC 373.1 K 4 3 Extended UNIQUAC 373.1 K without methionine 2 Kumelan et al. (2010), 393K 1 Extended UNIQUAC 393.1 K 0 1,5 1,7 1,9 2,1 2,3 2,5 m(CO2) in mol/(kg H2O) 2,7 2,9 Extended UNIQUAC 393.1 K 10 without methionine Results for the CO2‐H2O‐K2CO3‐Methionine system (Equilibrium constant from Sharma et al.) Extended UNIQUAC model 10 Kumelan et al. (2010), 353K 0.42 molal Methionine 1.27 molal K2CO3 9 Extended UNIQUAC 353 K 8 Extended UNIQUAC 353 K without methionine Kumelan et al. (2010), 373K 7 Total pressure in MPa Pitzer model, Kumelan et al. 6 5 Extended UNIQUAC 373 K 4 Extended UNIQUAC 373 K without methionine Kumelan et al. (2010), 393K 3 2 Extended UNIQUAC 393.1 K 1 0 0,8 1 1,2 1,4 1,6 1,8 Extended UNIQUAC 393.1 K without methionine m(CO2) in mol/(kg H2O) m(K2CO3)≈1.27 mol/(kg H2O) & m(Met) ≈0.42 mol/(kg H2O) 11 Measurements of freezing point depressions for mixtures of 1:1 (mole ratio) aqueous Met‐KOH and 1:3 (mole ratio) aqueous Met‐K2CO3 12 Freezing point depressions: Results and model correlation (Equilibrium constant from Sharma et al.) 1 mol ratio methionine:K2CO3 1:3 Freezing point in °C ‐1 ‐3 ‐5 ‐7 ‐9 Experimental ‐11 Extended UNIQUAC ‐13 ‐15 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 m (Potassium salt of methionine) in mol/(kg H2O) 0 mol ratio methionine:KOH 1:1 Freezing point in °C ‐1 ‐2 ‐3 ‐4 Experimental ‐5 Extended UNIQUAC ‐6 ‐7 0 0,2 0,4 0,6 0,8 1 1,2 m(potassium salt of methionine) in mol/(kg H2O) 1,4 1,6 13 The potassium salt of methionine as an absorbent in post‐ combustion contra MEA, MDEA and K2CO3 MDEA 2,5 Potassiumcarbonate 2 Potassium salt of methionine MEA 1,5 2 molal absorbent, 30 °C 6 Partial pressure of CO2 in kPa Equilibrium constant from Sharma et al. Partial pressure of CO2 in kPa Absorber conditions 1 molal absorbent, 30 °C 3 1 0,5 0 MDEA 5 Potassiumcarbonate 4 Potassium salt of methionine MEA 3 2 1 0 0 0,1 0,2 0,3 0,4 0,5 0 0,1 0,2 CO2 loading Partial pressure of CO2 in kPa Partial pressure of CO2 in kPa Equilibrium constant from Hamborg et al. Potassiumcarbonate 2 Potassium salt of Methionine MEA 1,5 1 MDEA 5 Potassiumcarbonate 4 2 1 0 0 0,1 0,2 0,3 CO2 loading 0,4 0,5 Potassium salt of Methionine MEA 3 0,5 0 0,5 2 molal absorbent, 30 °C 6 MDEA 2,5 0,4 CO2 loading 1 molal absorbent, 30 °C 3 0,3 0 0,1 0,2 0,3 0,4 0,5 CO2 loading 14 The potassium salt of methionine as an absorbent in post‐ combustion contra MEA, MDEA and K2CO3 Partial pressure of CO2 in kPa 1200 Potassium salt of methionine 1000 MDEA 800 MEA 600 Potassiumcarbonate 2 molal absorbent, 115 °C 9000 400 200 Potassium salt of methionine MDEA 8000 7000 6000 MEA 5000 Potassiumcarbonate 4000 3000 2000 1000 0 0 0 0,1 0,2 0,3 0,4 0 0,5 0,1 Potassium salt of methionine MEA 2830 2330 MDEA 1830 Potassiumcarbonate 1330 830 330 0 0,2 0,4 0,6 CO2 loading 0,8 1 Heat of reaction in kJ/(kg CO2 captured) 1 molal absorbent, 115 °C 3330 0,2 0,3 0,4 0,5 CO2 loading CO2 loading Heat of reaction in kJ/(kg CO2 captured) Equilibrium constant from Sharma et al. 10000 1 molal absorbent, 115 °C 1400 Partial pressure of CO2 in kPa Desorber conditions 2 molal absorbent, 115 °C 4330 3330 Potassium salt of methionine MEA 2830 MDEA 2330 Potassiumcarbonate 3830 1830 1330 830 330 0 0,2 0,4 CO2 loading 0,6 0,8 15 The potassium salt of methionine as an absorbent in post‐ combustion contra MEA, MDEA and K2CO3 4000 1 molal absorbent, 115 °C 900 600 Partial pressure of CO2 in kPa 700 MEA 500 Potassiumcarbonate 400 300 200 2500 Potassiumcarbonate 1500 1000 0 0 2100 0,2 0,3 CO2 loading 0,4 0,5 0 1 molal absorbent, 115 °C 1700 Potassium salt of methionine MEA 1500 MDEA 1300 Potassiumcarbonate 1900 1100 900 700 500 MEA 2000 500 0,1 Potassium salt of methionine MDEA 3000 100 0 2 molal absorbent, 115 °C 3500 Potassium salt of methionine MDEA 800 Heat of reaction in kJ/(kg CO2 caputred) Partial pressure of CO2 in kPa Equilibrium constant from Hamborg et al. 1000 Heat of reaction in kJ/(kg CO2 captured) Desorber conditions 0,1 0,2 0,3 CO2 loading 0,4 0,5 2 molal absorbent, 115 °C 2600 Potassium salt of methionine MEA 2100 MDEA Potassiumcarbonate 1600 1100 600 300 0 0,2 0,4 0,6 CO2 loading 0,8 1 0 0,2 0,4 CO2 loading 0,6 0,8 16 Conclusion I • The extreme difference between the properties of the potassium salt of methionine at absorber conditions and at desorber conditions indicates: – A strong temperature dependence of the equilibrium constant of methionine – Acidic properties of methionine strongest at desorber temperature • Portugal et al. found that the carbon dioxide solubility in potassium glycinate did not change much in the temperature range investigated (20‐ 50°C) 17 Conclusion II • • • • • Due to the limited amount of experimental data available, it is possible to model CO2 solubility in amino acid salt solutions without taking carbamate formation into account The potassium salt of methionine seems to have very interesting properties for post‐combustion usage. However VLE‐data at absorber column conditions are needed to validate the results The limited solubility and risk of precipitation provide challenges in the use of the potassium salt of methionine and must be investigated further – The 2 molal solutions for which calculations were shown here might be precipitating! More research is required to clarify the role of methionine in the absorption process: Especially regarding carbamate formation and kinetics Much more research is required on amino acid salt solutions. They have very interesting properties and could be real alternatives to alkanolamines. 18
© Copyright 2026 Paperzz