Math104 NO CALCULATOR Identity Problems 3 3 and x is in quadrant III and siny = with y in quadrant I , use the 5 4 identities to find the exact values: (Be Careful: the second does not make a special triange) 1. If cosx = a) sin(x + y) = sinxcosy + sinycosx = ( 3 3 4 7 4 7 9 )( ) + ( )( )= 4 5 5 4 20 20 If you draw the triangles corresponding to the angles x and y you can fint the values above. b)cos2x = cos2x - sin2x = (-3/5)2 - (-4/5)2 = c) sin2x = 2sinxcosx = 2 ( 7 25 24 4 3 )( )= 4 5 5 2. Find the exact value of a) cos (165 ) b) tan (15 ) c) sin(22.5⁰) Omit a) cos(45⁰ + 120⁰)= cos(45⁰) cos(120⁰) - sin(45⁰)sin(120⁰) = 2 1 2 3 2 6 * * = 2 2 2 2 4 c) Half-angle identity not on this exam. 3. Find sin(67.5˚) using the half-angle identity. Omit - half-angle identity not on this exam. 3 3 ) + cos(x + ) = sinx - cosx 2 2 3 3 3 3 L = sin(x )cos( ) + sin( ) cosx + cos(x)cos( ) - sin(x)sin( ) 2 2 2 2 = sin(x )(0) + (-1)cosx + cos(x)(0)- sin(x)(-1) = 0 - cosx + 0 +sinx = R 4. Verify the identity: sin(x + 5. Verify the identity: L= = 1 1 sin x * 1 sin x 1 sin x 1 1 sin x 1 1 sin x 1 1 sin x * 1 sin x 1 sin x 2 sec x tan x 1 sin x 1 sin x 2 1 sin x 1 sin 2 x 1 sin x 1 sin x (1 sin x ) (1 sin x ) 2 sin x 1 sin x 2 * * R = = 2 2 2 2 cos x cos x cos x cos x cos x cos x 6. Verify the identity: sin(4x) = 4sinxcosx – 8sin3xcosx L = sin(4x) = 2sin2xcos2x = 2(2sinxcosx)(cos2x - sin2x) = 4sinxcosx(cos2x - sin2x) = 4sinxcos3x - 4sin3xcosx = 4sinx*cosx*cos2x - 4sin3xcosx = 4sinx*cosx*(1 - sin2x) - 4sin3xcosx = 4sinxcosx(1 - sin2x) - 4sin3xcosx = 4sinxcosx -4 sin3xcosx - 4sin3xcosx = R 7. Verify the identity: sin2x(1 + cotx) + cos2x(1 - tanx) + cot2x = csc2x L = sin2x + sin2x cotx + cos2x - cos2x tanx + cot2x = sin2x + sin2x( = sin2x + sin2x( cos x sin x ) + cos2x - cos2x + cot2x sin x cos x cos x sin x ) + cos2x - cos2x + cot2x sin x cos x = sin2x + sinxcosx + cos2x - cosxsinx + cot2x = 1 + cot2x = csc2x = R 8. Show that the following equation is not an identity: sinx - tanx = 0 Try x = 30⁰: sin30⁰ - tan30⁰ = 9. Verify the identity: 1 3 which is not 0. 2 3 cot 2 x 1 = 1 - 2sin2x 2 1 cot x cos 2 x cos 2 x 1 1 2 sin x sin 2 x cot x 1 cos 2 x sin 2 x cos 2 x sin 2 x sin 2 x L= = = = = * 1 cos 2 x sin 2 x cos 2 x 1 cot 2 x sin 2 x cos 2 x 1 1 sin 2 x sin 2 x 2 = cos2x - sin2x = (1 - sin2x) - sin2x = 1 - 2sin2x = R 10. Verify the identity: L= sin( x y ) cos x cos y tan x tan y sin( x y ) sin x cos y sin y cos x sin x cos y sin y cos x = = tan x tan y R cos x cos y cos x cos y cos x cos y cos x cos y 11. Verify the identity: 2 cos 2 x = cotx - tanx sin 2 x 2 cos 2 x = sin 2 x 2(cos 2 x sin 2 x) cos 2 x sin 2 x cos 2 x sin 2 x cos x sin x cot x tan x 2 sin x cos x sin x cos x sin x cos x sin x cos x sin x cos x L= 12. Verify the identity: tanx + cotx = 2 csc2x R = 2 csc2x =2* 1 1 2 1 = 2* sin 2 x 2 sin x cos x 2 sin x cos x sin x cos x sin x cos x 1 sin 2 x cos 2 x sin 2 x cos 2 x + = + = = cos x sin x sin x cos x sin x cos x sin x cos x sin x cos x Since both sides simplify to the same quantity this verifies that the original equation is an identity. L = tanx + cotx =
© Copyright 2026 Paperzz