Sec. 13.7
- Graphing Systems of Inequalities
Target: We will learn to solve systems of inequalities by graphing
Svstem of Linear Ineoualities: two or nrore linear ineoualities in the
same variables
Solution ofa Slrstem ofLinear Inequalities: an ordered pair that
jh-}[$i$H
suiad
satisf iesbothlinearir.,"quuhti"r-T-lto4,-rq\)dc1{"..*\S
-;u -$[6vcrt^1fi$
+.ilfr[P;;Io
Graphing a System ofLinear Inequalities:
Step 1
Graph each linear inequality on the same
coordinate plane. First graph the boundary
line for each inequality fuse a
Eo\id.
line for < or > and a
line for < or
>J. Then test a point nof on the boundary line
to see which side to shade on. If the point is a
solution, then shade on the side containing the
point. If the point is not a solution, then shade
ofthe side not containing the point.
Step 2
Identifiz the region that
is
Shade-d
to all
the graphs ofthe inequalities. This region is the
graph of the system. Any point contained in
this region is a
to the system.
Solve each system of inequalities by graphing.
y<-l
1-\-'l
"1
*&lq+ZrLS arz
ia
fts,tt,
-t
lrr
r c
{+v- ovzr/q?pi
J
-iF(r',t)
r' " r'-'l
/'\ -'l
I { 'i!-
€0/q-*
^ nn
* Vou
da nal hott to agcr'+g cn
orlE[v6,
dra-u-l c.n o-rr6ul poh+1,.q +d+va ow(q7tg
f0q\ofl 'r- +tvd- iS li'\a- Ar\3\il[f.
y>2
2) 2y <-2x-2
x+g , rx+
0
L
I
I
&
U
llittl
TP (o,
0+D
o)
>a
0>,
fxl:L
1?
(c,c)
3ta\:= --2,r:)
,l':d-3
rl'-< -.)
l'riLl'jl.
.1
fo^g!!*b"
alt6\.
no ove(qpig
Sotqili,/L
x> -1
y>-4
x>-l
3)
t
^l{
-t lo
-llr
-, -4
I i.t
i\ I -?
t
-rle
60lid
-rP (0,0)
:r
i -'..1
;i_J
:r:lrd
\
0)-l
-i?rLt
I
TP [0,0)
o >-4
j I i_t{_
r,,(5
y' -* *l
u<1
q >_ -x r-l
)-4)
xlq
()t >
rls
^t .Jl>
solrd
'rP (o,o)
0;5
TruiL
I lr.l
clr
tl;l
;.1-i
:;DLrCl
ffi (d,,c)
0 21) fl
0)i
rcd)L
)oU+iDA
r'
x+y>2
5)y<x+6
X+9
ra
,a
._
A+V
ilr
,i o
dA^ail
T? (o/o)
0+0>)
o>,
lalse
ii,'LSt.lct
1l-Lo,o)
< 0r1e'
L' -- (r,
C\
-T-r-J-Q-
5oluh"'1
u>!r-2
6)" 2
x-y<3
lzlx-t
0
2
X-
u1
'
-;
-2
"l
4 0
i/_i
I
r.dtlli"uul/
r-i
(o,o)
!rLo)-a
oz
0>0-a
a >-9
-T?-ua-
TP(0,
C)
D-C.-!t
o< -\
-frut_
© Copyright 2026 Paperzz