Energy storage via high-energy density composite flywheels Brian C. Fabien [email protected] Department of Mechanical Engineering University of Washington Seattle, WA 98195 Energy storage via high-energy density composite flywheels – p.1/34 Presentation overview Introduction - Motivation - Basic Principle Energy storage via high-energy density composite flywheels – p.2/34 Presentation overview Introduction - Motivation - Basic Principle Stacked-ply disk design problem Energy storage via high-energy density composite flywheels – p.2/34 Presentation overview Introduction - Motivation - Basic Principle Stacked-ply disk design problem Disk construction Energy storage via high-energy density composite flywheels – p.2/34 Presentation overview Introduction - Motivation - Basic Principle Stacked-ply disk design problem Disk construction Testing and evaluation Energy storage via high-energy density composite flywheels – p.2/34 Presentation overview Introduction - Motivation - Basic Principle Stacked-ply disk design problem Disk construction Testing and evaluation Conclusion Energy storage via high-energy density composite flywheels – p.2/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Hydrostorage: 300 Wh/m3 Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Hydrostorage: 300 Wh/m3 Composite flywheels: 100 to 1000 Wh/kg Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Hydrostorage: 300 Wh/m3 Composite flywheels: 100 to 1000 Wh/kg Compressed air: 2000 Wh/m3 Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Hydrostorage: 300 Wh/m3 Composite flywheels: 100 to 1000 Wh/kg Compressed air: 2000 Wh/m3 Gasoline: 14000 Wh/kg Energy storage via high-energy density composite flywheels – p.3/34 Some energy storage technologies Lead acid battery: 18 Wh/kg Nickel-cadmium battery: 31 Wh/kg Hydrostorage: 300 Wh/m3 Composite flywheels: 100 to 1000 Wh/kg Compressed air: 2000 Wh/m3 Gasoline: 14000 Wh/kg Hydrogen: 38000 Wh/kg Energy storage via high-energy density composite flywheels – p.3/34 Flywheel Energy Storage (FES) FES usage - Electrical load leveling - Batteries for electrical vehicles - Pulsed power supplies FES design challenges - Bearings - Drive/generator - Containment - Flywheel Energy storage via high-energy density composite flywheels – p.4/34 Flywheel Energy Storage - Basic ideas A kinetic energy storage device Maximum energy density: 1 1 2 α= Iωf Wh/kg 2 3600ρV I - moment of inertia of the disk (kg-m2 ), ωf - failure speed of the disk (rad/s), ρ - density (kg/m3 ), V - volume (m3 ). Energy storage via high-energy density composite flywheels – p.5/34 Flywheel Energy Storage - Schematics Bearings Renewable Power Source Motor/Generator Flywheel T 00000 11111 11 00 T’ Motor coils Motor magnets Flywheel B’ Housing 11 00 00000 11111 B Energy storage via high-energy density composite flywheels – p.6/34 Stacked-ply Flywheel tangential ply radial ply Alternate layers of radial and tangential plies Can fiber angle variation improve performance? How can such disks be constructed? Energy storage via high-energy density composite flywheels – p.7/34 Constitutive relationship 1 fiber direction ro r σθθ ri σrr 2 σ11 σ22 τ12 φ Ply stiffness relationship Q11 Q12 0 ǫ11 = Q21 Q22 0 ǫ22 γ12 k 0 0 Q66 k k | {z } [Q]k Energy storage via high-energy density composite flywheels – p.8/34 The k-th ply stiffness ǫrr Q̄rr Q̄rθ Q̄r6 σrr σθθ = Q̄rθ Q̄θθ Q̄θ6 ǫθθ γrθ k Q̄r6 Q̄θ6 Q̄66 k τrθ k | {z } [Q̄(φ)]k Energy storage via high-energy density composite flywheels – p.9/34 Stiffness components Q̄rr Q̄rθ Q̄22 Q̄66 Q̄r6 Q̄θ6 Q11 cos4 φ + Q22 sin4 φ + (2Q12 + 4Q66 ) cos2 φ sin2 φ Q12 (cos4 φ + sin4 φ) + (Q11 + Q22 − 4Q66 ) cos2 φ sin2 φ Q11 sin4 φ + Q22 cos4 φ + (2Q12 + 4Q66 ) cos2 φ sin2 φ (Q11 + Q22 − 2Q12 − 2Q66 ) cos2 φ sin2 φ + Q66 (cos4 φ + sin4 φ) = (Q11 − Q12 − 2Q66 ) cos3 φ sin φ − (Q22 − Q12 − 2Q66 ) cos φ sin3 φ = (Q11 − Q12 − 2Q66 ) cos φ sin3 φ − (Q22 − Q12 − 2Q66 ) cos3 φ sin φ. = = = = Energy storage via high-energy density composite flywheels – p.10/34 Ply properties Q11 Q22 Q12 = Q21 E11 = 1 − ν12 ν21 E22 = 1 − ν12 ν21 ν21 E11 = 1 − ν12 ν21 Q66 = G12 Energy storage via high-energy density composite flywheels – p.11/34 Laminate constitutive relations ǫrr σ̃rr σ̃θθ = [A(φ)] ǫθθ γrθ τ̃rθ 1 1 ◦ [A(φ)] = λ [Q̄(90 )] [Q̄(φ)] + [Q̄(−φ)] +(1 − λ) | {z } 2 2 | {z } tang. stiffness radial stiffness total thickness of tangential reinforcement plies . λ= total thickness of laminate Energy storage via high-energy density composite flywheels – p.12/34 Laminate constitutive relations (cont.) ǫrr ǫθθ γrθ Effective strain-stress Srr Srθ 0 σ̃rr = Srθ Sθθ 0 σ̃θθ 0 0 S66 0 | {z } [S(φ)] where [S(φ)] = [A(φ)]−1 is the effective compliance matrix σ̃rr σ11 σ22 = [T(φ)]k [Q̄(φ)]k [S(φ)] σ̃θθ . 0 τ12 k Energy storage via high-energy density composite flywheels – p.13/34 Coordinate trasformation cos2 φ T(φ) = sin2 φ − cos φ sin φ 2 sin φ cos2 φ cos φ sin φ 2 cos φ sin φ − 2 cos φ sin φ . cos2 φ sin2 φ Energy storage via high-energy density composite flywheels – p.14/34 Stress state Equilibrium: d dr (rσ̃rr ) − σ̃θθ + ρω 2 r2 = 0 Energy storage via high-energy density composite flywheels – p.15/34 Stress state Equilibrium: d dr (rσ̃rr ) − σ̃θθ + ρω 2 r2 = 0 Compatibility: r dǫdrθθ + ǫθθ − ǫrr = 0 Energy storage via high-energy density composite flywheels – p.15/34 Stress state Equilibrium: d dr (rσ̃rr ) − σ̃θθ + ρω 2 r2 = 0 Compatibility: r dǫdrθθ + ǫθθ − ǫrr = 0 States: σ̃rr x1 = , 2 2 ρω ro σ̃θθ x2 = , 2 2 ρω ro x3 = φ, x4 = r/ro = τ Energy storage via high-energy density composite flywheels – p.15/34 Stress state Equilibrium: d dr (rσ̃rr ) − σ̃θθ + ρω 2 r2 = 0 Compatibility: r dǫdrθθ + ǫθθ − ǫrr = 0 States: σ̃rr x1 = , 2 2 ρω ro σ̃θθ x2 = , 2 2 ρω ro x3 = φ, x4 = r/ro = τ Control variable: =⇒ derivative of fiber angle: u = dφ/dτ Energy storage via high-energy density composite flywheels – p.15/34 Stress state Equilibrium: d dr (rσ̃rr ) − σ̃θθ + ρω 2 r2 = 0 Compatibility: r dǫdrθθ + ǫθθ − ǫrr = 0 States: σ̃rr x1 = , 2 2 ρω ro σ̃θθ x2 = , 2 2 ρω ro x3 = φ, x4 = r/ro = τ Control variable: =⇒ derivative of fiber angle: u = dφ/dτ Nondimensional compliance: Sθθ = E11 Sθθ and Srθ = E11 Srθ . Energy storage via high-energy density composite flywheels – p.15/34 State equations ẋ1 = ẋ2 = x2 − x1 − x24 /x4 , ′ − x1 x4 Srθ u − Srr − Srθ x24 ′ +x2 x4 Sθθ u + Sθθ / [x4 Sθθ ] , ẋ3 = u, ẋ4 = 1. ′ = dS /dφ, and where ẋi = dxi /dτ, i = 1, 2, 3, 4, Sθθ θθ ′ = dS /dφ. Srθ rθ Energy storage via high-energy density composite flywheels – p.16/34 Flywheel Performance Energy density: α= ωf2 14400 ro4 ro2 4 − ri − ri2 [Wh/kg] Energy storage via high-energy density composite flywheels – p.17/34 Flywheel Performance Energy density: α= ωf2 14400 ro4 ro2 4 − ri − ri2 [Wh/kg] Design problem: Find the radial-ply fiber orientation that will maximize ωf . Energy storage via high-energy density composite flywheels – p.17/34 Failure theories: When does the disk fail? Maximum stress failure criterion Maximum strain failure criterion Tsai-Wu failure criterion Energy storage via high-energy density composite flywheels – p.18/34 Optimization results Compare 4 designs: Benchmark design: φ(τ ) = 0. Jσ , maximum stress failure criterion. Jǫ , maximum strain failure criterion. JTW , Tsai-Wu failure criterion. Energy storage via high-energy density composite flywheels – p.19/34 Fiber orientation 1.6 1.4 Benchmark Jσ 1.2 Jε JTW Fiber angle, φ (radians) 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 0 0.1 0.2 0.3 0.4 0.5 r/ro 0.6 0.7 0.8 0.9 1 Energy storage via high-energy density composite flywheels – p.20/34 Benchmark design Energy storage via high-energy density composite flywheels – p.21/34 Maximum stress design Energy storage via high-energy density composite flywheels – p.22/34 Maximum strain design Energy storage via high-energy density composite flywheels – p.23/34 Tsai−Wu design Energy storage via high-energy density composite flywheels – p.24/34 Effective radial stress 0.2 0.18 0.16 Effective radial stress 0.14 0.12 0.1 0.08 0.06 Benchmark J σ 0.04 J ε J 0.02 0 TW 0 0.1 0.2 0.3 0.4 0.5 r/ro 0.6 0.7 0.8 0.9 1 Energy storage via high-energy density composite flywheels – p.25/34 Effective tangential stress 0.55 Benchmark Jσ Jε 0.5 Effective tangential stress JTW 0.45 0.4 0.35 0.3 0 0.1 0.2 0.3 0.4 0.5 r/ro 0.6 0.7 0.8 0.9 1 Energy storage via high-energy density composite flywheels – p.26/34 Radial ply stress σ11 0.6 Radial ply stress, σ11 0.5 Benchmark J 0.4 σ J ε J 0.3 TW 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 r/ro 0.6 0.7 0.8 0.9 1 Energy storage via high-energy density composite flywheels – p.27/34 Tangential ply stress σ11 0.75 Benchmark Jσ 0.7 Jε Tangential ply stress, σ11 JTW 0.65 0.6 0.55 0.5 0.45 0 0.1 0.2 0.3 0.4 0.5 r/ro 0.6 0.7 0.8 0.9 1 Energy storage via high-energy density composite flywheels – p.28/34 Energy density Disk Maximum Maximum Tsai-Wu design stress strain Benchmark 150 150 142 Jσ 168 168 106 161 161 157 Jǫ JTW 166 166 156 Energy storage via high-energy density composite flywheels – p.29/34 Flywheel construction Energy storage via high-energy density composite flywheels – p.30/34 Fiber layout Benchmark design Energy storage via high-energy density composite flywheels – p.31/34 Fiber layout Optimized design Energy storage via high-energy density composite flywheels – p.32/34 Tangential strain Energy storage via high-energy density composite flywheels – p.33/34 Conclusions Fiber angle optimization can improve energy density Energy storage via high-energy density composite flywheels – p.34/34 Conclusions Fiber angle optimization can improve energy density Failure criteria is significant Energy storage via high-energy density composite flywheels – p.34/34 Conclusions Fiber angle optimization can improve energy density Failure criteria is significant Optimized radial plies can be constructed Energy storage via high-energy density composite flywheels – p.34/34 Conclusions Fiber angle optimization can improve energy density Failure criteria is significant Optimized radial plies can be constructed Behavior as predicted by classical lamination theory Energy storage via high-energy density composite flywheels – p.34/34
© Copyright 2026 Paperzz