11/6/14 Claire bought 5 kg of apples and 2 kg of bananas and paid altogether $22 Dale bought 4 kg of apples and 6 kg of bananas and paid altogether $33 Use inverse matrices to find the cost of 1 kg of bananas Claire bought 5 kg of apples and 2 kg of bananas and paid altogether $22 Dale bought 4 kg of apples and 6 kg of bananas and paid altogether $33 5a + 2b = 22 4a + 6b = 33 ⎡ 5 2 ⎤ ⎡ 22 ⎤ X ⎢ ⎥=⎢ ⎥ 33 4 6 ⎦ ⎣ ⎦ ⎣ 1 11/6/14 apples bananas ⎡ 5 2 ⎤ ⎡ 22 ⎤ ⎢ ⎥=⎢ ⎥ kg ⎣ 4 6 ⎦ ⎣ 33 ⎦ kg As an equaIon: ⎡ 5 2 ⎤ ⎡ 22 ⎤ X⎢ ⎥=⎢ ⎥ ⎣ 4 6 ⎦ ⎣33 ⎦ ⎡ a ⎤ ⎥ ⎣ b ⎦ * X will be a matrix with format ⎢ ⎡ 6 −2 ⎤ ⎡ 6 −2 ⎤ ⎢ ⎥ ⎡ a ⎤ ⎡ 5 2 ⎤ 22 22 ⎡ 22 ⎤ ⎢ 22 22 ⎥ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎢ ⎥ ⎢ ⎥ 33 b 4 6 −4 5 −4 5 ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ 22 22 ⎥ ⎢ 22 22 ⎥ ⎣ ⎦ ⎣ ⎦ To isolate a and b, muIply both sides of the equaIon by the inverse of ⎡ 5 2 ⎤ ⎢ ⎥ ⎣ 4 6 ⎦ M −1 1 = [ adj M ] M −1 ⎡ a b ⎤ 1 ⎡ d −b ⎤ = ⎢ ⎥ ⎢ ⎥ ad − bc ⎣ −c a ⎦ ⎣ c d ⎦ 2 11/6/14 M −1 1 = [ adj M ] M ⎡ 5 2 ⎤ ⎢ ⎥ ⎣ 4 6 ⎦ −1 = −1 ⎡ a b ⎤ 1 ⎡ d −b ⎤ = ⎢ ⎥ ⎢ ⎥ ad − bc ⎣ −c a ⎦ ⎣ c d ⎦ 1 ⎡ 6 ⎢ 22 ⎣ −4 ⎡ ⎢ −2 ⎤ = ⎢ ⎥ 5 ⎦ ⎢ ⎢ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ a ⎤ ⎡ 5 2 ⎤ ⎡ 22 ⎤ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎣ b ⎦ ⎣ 4 6 ⎦ ⎣ 33 ⎦ MulIply both sides of the equaIon by the inverse: ⎡ ⎡ a ⎤⎢ ⎢ ⎥⎢ b ⎣ ⎦⎢ ⎢ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎡ ⎥⎡ ⎤ ⎢ ⎥⎢ 5 2 ⎥ = ⎢ ⎥⎣ 4 6 ⎦ ⎢ ⎥ ⎢ ⎦ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎥⎡ ⎤ ⎥ ⎢ 22 ⎥ ⎥ ⎣ 33 ⎦ ⎥ ⎦ 3 11/6/14 ⎡ ⎡ a ⎤⎢ ⎢ ⎥⎢ b ⎣ ⎦⎢ ⎢ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎡ ⎥⎡ ⎤ ⎢ ⎥⎢ 5 2 ⎥ = ⎢ ⎥⎣ 4 6 ⎦ ⎢ ⎥ ⎢ ⎦ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎥⎡ ⎤ ⎥ ⎢ 22 ⎥ ⎥ ⎣ 33 ⎦ ⎥ ⎦ ⎡ 1 0 ⎤ ⎥ ⎦ The product of any matrix M and M-‐1 is the idenIty matrix ⎢⎣ 0 1 (works as the mulIplicaIve I.D., 1, but for matrix mulIplicaIon. ⎡ ⎡ a ⎤ ⎢ ⎢ ⎥=⎢ ⎣ b ⎦ ⎢ ⎢ ⎣ 6 22 −4 22 −2 22 5 22 ⎤ ⎥⎡ ⎤ ⎥ ⎢ 22 ⎥ ⎥ ⎣ 33 ⎦ ⎥ ⎦ ⎡ ⎡ a ⎤ ⎢ ⇒⎢ ⎥=⎢ ⎣ b ⎦ ⎢ ⎢ ⎣ 66 22 77 22 ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎡ a ⎤ ⎡ 3 ⎤ ⇒⎢ ⎥=⎢ ⎥ b ⎣ ⎦ ⎣ 3.5 ⎦ If matrices are equal, each element in one is equal to the corresponding element in the other, so b= 3.5 and a Kg of bananas costs $3.50. 4
© Copyright 2026 Paperzz