SECTION 4.2 4.2 ■ Use the Midpoint Rule with the given value of n to approximate the integral. Round the answer to four decimal places. 1. 3. 5. y y 2 0 1 y s1 x 2 dx, 10 0 ■ 2. n 10 4. n5 sin sx dx, ■ 7– 8 n5 x dx, ■ ■ 6. ■ y 1 dx, n 4 2x 7 3 1 y 4 0 y n4 ■ ■ ■ 19–22 ■ 2x* i n l i1 2 5x*i x, sx* x, i n l i1 ■ ■ ■ 20. y 21. y (1 x ) dx 22. y 3x 5 dx 2 2 ■ ■ ■ ■ ■ ■ 9. 23. y 3 24. y 8 25. y 10 11. 13. 15. 17. Copyright © 2013, Cengage Learning. All rights reserved. ■ b y 4 y 1 a 1 0 y c dx x 2 dx 12. ax b dx 14. 2 1 1 y b 0 10. t 3 t 2 1 dt 16. x 3 4x dx ■ ■ 18. ■ ■ ■ y 7 y 5 y 0 2 1 26. y 5 1 5 y b a y 5 2 ■ 6 f x dx y f x dx 3 ■ ■ ■ ■ ■ y 12 f x dx 6 5 f x dx y f x dx 0 2 7 f x dx y f x dx 2 3 ■ f x dx y 0 ■ ■ 3 ■ f x dx y ■ ■ 6 5 f x dx ■ ■ ■ ■ ■ 27. If x28 f x dx 1.7 and x58 f x dx 2.5, find x25 f x dx. 6 2x dx 28. If x01 f t dt 2, x04 f t dt 6, and x34 f t dt 1, find x13 f t dt. 2 3x x dx 2 29–31 3 ■ ■ ■ y ■ 3 0 ■ Use the form of the definition of the integral given in Theorem 4 to evaluate the integral. 9–18 ■ 2 x dx ■ Write the given sum or difference as a single integral in the form xab f x dx . 0, 1 ■ ■ 1 23–26 1, 4 ■ 3 1 2x dx 1 n 8. lim Evaluate the integral by interpreting it in terms of areas. y n 7. lim 3 ■ 19. ■ secx3 dx, n 6 0 ■ tan x dx, Express the limit as a definite integral on the given interval. ■ 1 S Click here for solutions. 1–6 3 ■ THE DEFINITE INTEGRAL A Click here for answers. 5 THE DEFINITE INTEGRAL 2x 2 3x 4 dx 29. y 0 31. y 1 3 Px 2 Qx R dx t 3 2t 3 dt ■ ■ ■ ■ ■ ■ 1 ■ Use Property 8 to estimate the value of the integral. x 2 2x dx 30. 3 y 4 cos x dx s1 x 4 dx ■ ■ ■ ■ ■ ■ ■ ■ ■ 2 ■ SECTION 4.2 THE DEFINITE INTEGRAL 4.2 ANSWERS E Click here for exercises. 1. 153.125 2. −0.7873 3. 1.8100 4. 0.3450 5. 6.4643 S Click here for solutions. 3.9379 1 2 7. 0 2x − 5x dx 4√ 8. 1 x dx 6. 9. (b − a) c 10. 9 11. 15 12. 83 a +b 2 14. 19.5 13. 4 15. 3 16. P a3 b3 − 3 3 +Q b2 a2 − 2 2 b4 + 2b2 4 18. 140.25 17. 19. 10 20. 4 21. 0 22. 41 6 23. 12 1 8 f (x) dx f (x) dx 0 10 25. 7 f (x) dx 6 26. 0 f (x) dx Copyright © 2013, Cengage Learning. All rights reserved. 24. 27. −0.8 28. −9 29. −3 ≤ 0 −3 x2 + 2x dx ≤ 9. √ π/3 2π ≤ π/4 cos x dx ≤ 24 1 √ √ 31. 2 ≤ −1 1 + x4 dx ≤ 2 2 π 30. 24 + R (b − a) SECTION 4.2 4.2 THE DEFINITE INTEGRAL ■ 3 SOLUTIONS E Click here for exercises. 1. The width of the intervals is ∆x = (5 − 0) /5 = 1 so the partition points are 0, 1, 2, 3, 4, 5 and the midpoints are 0.5, 1.5, 2.5, 3.5, 4.5. The Midpoint Rule gives 5 0 x3 dx ≈ 5 i=1 5. ∆x = (10 − 0) /5 = 2, so the endpoints are 0, 2, 4, 6, 8, and 10, and the midpoints are 1, 3, 5, 7, and 9. The Midpoint Rule gives 10 f (xi ) ∆x 0 5 √ sin x dx ≈ f (xi ) ∆x i=1 √ √ = 2 sin 1 + sin 3 = (0.5)3 + (1.5)3 + (2.5)3 + (3.5)3 + (4.5)3 √ √ √ + sin 5 + sin 7 + sin 9 = 153.125 ≈ 6.4643 2. The width of the interval ∆x = (3 − 1) /4 = 0.5 so the partition points are 1.0, 1.5, 2.0, 2.5, 3.0 and the midpoints are 1.25, 1.75, 2.25, 2.75. 3 1 6. 4 1 dx ≈ f (xi ) ∆x 2x − 7 i=1 1 1 = 0.5 + 2 (1.25) − 7 2 (1.75) − 7 + ∆x = (π − 0) /6 = π 6, so the endpoints are 0, π6 , 4π 5π , 6 , and 6π , and the midpoints 6 6 11π and 12 . The Midpoint Rule gives π 1 1 + 2 (2.25) − 7 2 (2.75) − 7 0 sec (x/3) dx ≈ = 6 i=1 π 6 π 3π , , 12 12 f (xi ) ∆x π sec 36 + sec 3π + sec 5π 36 36 + sec ≈ −0.7873 are 2π 3π 6 , 6 , 5π 7π 9π , , , 12 12 12 7π 36 + sec 9π 36 + sec 11π 36 ≈ 3.9379 3. ∆x = (2 − 1) /10 = 0.1 so the partition points are 1.0, 1.1, . . . , 2.0 and the midpoints are 1.05, 1.15, . . . , 1.95. 2 10 1 + x2 dx ≈ f (xi ) ∆x 1 i=1 = 0.1 1 + (1.05)2 + + ··· + 1 + (1.15)2 ∆x = 1 4 π 4 −0 = π 16 π so the partition points are 0, 16 , n→∞ i=1 8. Copyright © 2013, Cengage Learning. All rights reserved. On [1, 4], lim n n→∞ i=1 x∗i ∆x = 4 1 √ x dx. 2π , 16 3π 4π , 16 16 π 3π 5π 7π and the midpoints are 32 , 32 , 32 , 32 . The Midpoint Rule gives π/4 π π tan x dx ≈ 16 tan 32 + tan 3π 32 0 5π + tan 32 + tan 7π 32 ≈ 0.3450 On [0, 1], n 1 2 (x∗i )2 − 5x∗i ∆x = 0 2x2 − 5x dx. lim 1 + (1.95)2 ≈ 1.8100 4. 7. 9. b a c dx = lim n→∞ n b−a b−a nc c = lim n→∞ n i=1 n = lim (b − a) c = (b − a) c n→∞ 4 ■ SECTION 4.2 10. THE DEFINITE INTEGRAL n 9i 9 6 − 2 −2 + n→∞ n i=1 n n 9 18i = lim 10 − n→∞ n i=1 n n n 162 90 = lim 1− 2 i n→∞ n i=1 n i=1 162 n(n + 1) 90 n− 2 = lim n→∞ n n 2 1 = lim 90 − 81 · 1 1 + n→∞ n 7 (6 − 2x) dx = lim −2 = 90 − 81 = 9 11. 1 x − 2 dx 2 n 3 3i = lim −2 1+ n→∞ n i=1 n 2 n 6i 3 9i − 1 + = lim n→∞ n i=1 n2 n n n n 18 3 27 2 i + i − 1 = lim n→∞ n3 i=1 n2 i=1 n i=1 18 n (n + 1) 3 27 n (n + 1) (2n + 1) + − n = lim n→∞ n3 6 n2 2 n 1 1 1 9 ·1 1+ 2+ +9·1 1+ −3 = lim n→∞ 2 n n n 9 = 2 · 2 + 9 − 3 = 15 5 2 12. 1 2 + 3x − x dx 2 n 4i 4i 4 − 1+ = lim 2+3 1+ n→∞ n i=1 n n 2 n 4i 16i 4 +4 = lim − 2 + n→∞ n i=1 n n n n n 16 16 64 = lim − 3 i2 + 2 i+ 1 n→∞ n i=1 n i=1 n i=1 64 n (n + 1) (2n + 1) 16 n (n + 1) 16 + 2 + n = lim − 3 n→∞ n 6 n 2 n 1 1 1 32 2+ +8·1 1+ + 16 = lim − · 1 1 + n→∞ 3 n n n 4 2 = − 64 + 8 + 16 = 3 Copyright © 2013, Cengage Learning. All rights reserved. 13. 1 0 8 3 n 1 i +b a n→∞ n i=1 n n n b a = lim i + 1 n→∞ n2 i=1 n i=1 b a n (n + 1) + n = lim n→∞ n2 2 n a 1 a +b = +b = lim ·1 1+ n→∞ 2 n 2 (ax + b) dx = lim 14. 0 2x2 − 3x − 4 dx 2 n 3i 3i 3 = lim 2 −3 + −4 − 3 −3 + n→∞ n i=1 n n 2 n 45i 3 18i = lim + 23 − n→∞ n i=1 n2 n n n n 135 69 54 2 = lim i − 2 i+ 1 n→∞ n3 i=1 n i=1 n i=1 135 n (n + 1) 69 54 n (n + 1) (2n + 1) − + n = lim n→∞ n3 6 n2 2 n 1 135 1 1 2+ − + 69 = lim 9 · 1 1 + ·1 1+ n→∞ n n 2 n −3 = 9 · 2 − 135 + 69 = 19.5 2 1 3 2 15. −1 t − t + 1 dt 3 2 n 2i 2 2i = lim − −1 + +1 −1 + n→∞ n i=1 n n 3 n 12i2 6i 2 8i − + = lim − 1 n→∞ n i=1 n3 n2 n 2 4i 4i − + 1 + 1 − n2 n 3 2 n 16i 10i 2 8i −1 − 2 + = lim n→∞ n i=1 n3 n n n n n n 32 20 2 16 3 2 = lim i − i + i − 1 n→∞ n4 i=1 n3 i=1 n2 i=1 n i=1 2 2 32 n (n + 1) (2n + 1) 16 n (n + 1) = lim − 3 n→∞ n4 4 n 6 20 n (n + 1) 2 + 2 − n n 2 n 2 1 1 16 1 ·1 1+ 2+ − = lim 4 · 12 1 + n→∞ n 3 n n 1 + 10 · 1 1 + −2 n = 4 − 32 + 10 − 2 = 43 3 b 16. a P x2 + Qx + R dx 2 n b−a b−a = lim P a+ i n→∞ n i=1 n b−a i +R +Q a+ n 2 n (b − a) 2 b−a = lim i P n→∞ n i=1 n2 b−a i + P a2 + Qa + R + (2P a + Q) n 3 n n (b − a) 2 (b − a)2 i + (2P a + Q) i = lim P 2 n→∞ n3 n i=1 i=1 n b−a + P a2 + Qa + R 1 n i=1 SECTION 4.2 = lim n→∞ P (b − a)3 n (n + 1) (2n + 1) n3 6 (b − a)2 n (n + 1) + (2P a + Q) n2 2 b−a 2 n + P a + Qa + R n 3 1 1 P (b − a) 2+ = lim 1 1+ n→∞ 6 n n 1 Q (b − a)2 1 1 + + Pa + 2 n 2 + P a + Qa + R (b − a) (b − a)3 Q (b − a)2 + Pa + 3 2 + P a2 + Qa + R (b − a) 3 a3 b =P − b2 a + ba2 − + ab2 − 2a2 b + a3 + a2 b − a3 3 3 2 b a2 +Q − ab + + ab − a2 + R (b − a) 2 2 3 2 3 2 b a b a =P − +Q − + R (b − a) 3 3 2 2 b 3 17. 0 x + 4x dx 3 n b bi bi = lim +4 n→∞ n i=1 n n 4 n 2 n b b 3 = lim i + 4 i n→∞ n4 i=1 n2 i=1 4 2 4b2 n (n + 1) b n (n + 1)2 = lim + n→∞ n4 4 n2 2 2 4 1 1 b 2 2 = lim + 2b · 1 1 + ·1 1+ n→∞ 4 n n = lim n→∞ = 19. 3 1 81 4 THE DEFINITE INTEGRAL ■ 5 2 81 2 1 1 1 ·1 1+ 2+ + 27 · 1 1 + 4 n n n 1 + 21 + 45 · 1 1 + n + 54 + 45 + 21 = 140.25 (1 + 2x) dx can be interpreted as the area under the graph of f (x) = 1 + 2x between x = 1 and x = 3. This is equal to the area of the rectangle plus the area of the triangle, so 3 (1 + 2x) dx = A = 2 · 3 + 12 · 2 · 4 = 10. 1 Or: Use the formula for the area of a trapezoid: A = 12 (2) (3 + 7) = 10. =P b4 + 2b2 4 5 3 18. 2 t − 2t + 3 dt 3 n 3i 3 3i = lim +3 −2 2+ 2+ n→∞ n i=1 n n n 6i 54i2 36i 3 27i3 + 8 − 4 − + 3 + + = lim n→∞ n i=1 n3 n2 n n 3 2 n 54i 30i 3 27i + 2 + = lim +7 n→∞ n i=1 n3 n n n n n n 162 90 21 81 3 2 i + i + i + 1 = lim n→∞ n4 i=1 n3 i=1 n2 i=1 n i=1 2 2 162 n (n + 1) (2n + 1) 81 n (n + 1) + 3 = lim n→∞ n4 4 n 6 90 n (n + 1) 21 + n + 2 n 2 n 20. 3 −1 (2 − x) dx can be interpreted as A1 − A2 , where A1 and A2 are the areas of the triangles shown. Thus, 3 (2 − x) dx = 12 · 3 · 3 − 12 · 1 · 1 = 4. −1 21. 2 −2 (1 − |x|) dx can be interpreted as the area of the middle triangle minus the areas of the outside ones, so 2 (1 − |x|) dx = 12 · 2 · 1 − 2 · 12 · 1 · 1 = 0. −2 Copyright © 2013, Cengage Learning. All rights reserved. = 22. 3 0 |3x − 5| dx can be interpreted as the area under the graph of the function f (x) = |3x − 5| between x = 0 and x = 3. This is equal to the sum of the areas of the two triangles, so 3 |3x − 5| dx = 12 · 53 · 5 + 12 3 − 53 4 = 41 . 0 6 23. 3 1 f (x) dx + 6 12 f (x) dx + 6 f (x) dx 12 12 6 = 1 f (x) dx + 6 f (x) dx = 1 f (x) dx 3 6 ■ SECTION 4.2 24. 25. 26. 27. 28. 29. 8 THE DEFINITE INTEGRAL f (x) dx + 5 f (x) dx 8 8 5 = 0 f (x) dx + 5 f (x) dx = 0 f (x) dx 7 10 f (x) dx − 2 f (x) dx 2 = 27 f (x) dx + 710 f (x) dx − 27 f (x) dx = 710 f (x) dx 5 0 6 f (x) dx − −3 f (x) dx + 5 f (x) dx −3 5 0 6 0 = −3 f (x) dx + 0 f (x) dx − −3 f (x) dx + 5 f (x) dx 6 = 0 f (x) dx 5 8 8 f (x) dx + 5 f (x) dx = 2 f (x) dx ⇒ 2 5 5 f (x) dx + 2.5 = 1.7 ⇒ 2 f (x) dx = −0.8 2 1 3 4 4 f (t) dt + 1 f (t) dt + 3 f (t) dt = 0 f (t) dt 0 3 ⇒ 2 + 1 f (t) dt + 1 = −6 ⇒ 3 f (t) dt = −6 − 2 − 1 = −9 1 5 0 If f (x) = x2 + 2x, −3 ≤ x ≤ 0, then f (x) = 2x + 2 = 0 when x = −1, and f (−1) = −1. At the endpoints, f (−3) = 3, f (0) = 0. Thus the absolute minimum is m = −1 and the absolute maximum is M = 3. Thus 0 2 −1 [0 − (−3)] ≤ −3 x + 2x dx ≤ 3 [0 − (−3)] or 0 −3 ≤ −3 x2 + 2x dx ≤ 9. Copyright © 2013, Cengage Learning. All rights reserved. If π 4 √ ≤ x ≤ π3 , then 12 ≤ cos x ≤ 22 , so √ π/3 1 π − π4 ≤ π/4 cos x dx ≤ 22 π3 − π4 or 2 3 √ π/3 π 2π ≤ π/4 cos x dx ≤ 24 . 24 √ √ 4 31. For −1 ≤ x ≤ 1, 0 ≤ x ≤ 1 and 1 ≤ 1 + x4 ≤ 2, so √ 1 √ 1 [1 − (−1)] ≤ −1 1 + x4 dx ≤ 2 [1 − (−1)] or √ 1 √ 2 ≤ −1 1 + x4 dx ≤ 2 2. 30.
© Copyright 2026 Paperzz