Chapter 10 Polynomials and Factoring 3x4 – 11x3 + 0x2 + 1x – 9 3, – 11 , 0 ,1, and – 9 0 constant monomial 1 linear binomial 2 quadratic binomial 3 4 cubic quartic polynomial trinomial x5 – 2x4 + 4x3 + 23x2 –1 + + 12x4 + x3 + x2 - – 3x – 3 2x6 -x5 +3x3 -14x2 +13 7x5 -x4 +9x3 +13x2 +2 2x6 +6x5-x4 +12x3 -x2 +15 -x3 -5x2 +x -1 x3 -3x2 -10x +9 -8x2 -9x +8 5,.6932x4 – 183.321x3 + 2171.09x2 – 10,636.6x + 51,547 5,.6932x4 – 183.321x3 + 2171.09x2 – 10,636.6x + 51,547 x 5 x 2 + 7x – 5x – 35 x2 + 2x – 35 7x2 + x – 35x – 5 7x2 – 34x – 5 -x+4 x2-11x+8 -8x+32 11x2-44x -x3+4x2 -x3+15x2-52x+32 2x3 9x2 4x3 - 2x 5- 18x2 + 9x4 - 22x + 11x3 -2x5 + 9x4 + 15x3 - 18x2 - 22x 11x Length of pool And walkway A Width of pool and walkway 5x + 6 2x + 4 (5x + 6)(2x + 4) 10x2 + 20x + 12x + 24 10x2 + 32x + 24 1344 4664 9984 17,304 26,624 13x + 26 - x3 - 2x2 -x3 - 2x2 + 13x + 26 11x2(-5x+1) +7x(-5x+1) – 3(-5x+1) -55x3 + 11x2 - 35x2+7 + 15x - 3 -55x3 - 24x2 + 22x - 3 (2x+2)(3x+2) 6x2 + 4x + 6x + 4 6x2 + 10x + 4 X(in) 2 3 4 5 A(in2) 48 88 140 204 a2-b2 (9w)2-32 81w2-9 a2+ 2ab +b2 (12x)2 + 2(12x)(4) + 42 144x2 + 96x + 16 a2- 2ab + b2 (3k)2 -2(3k)(2m)+ (2m)2 9k2- 12km + 4m2 (50-3)(50+3) 2500-9 2491 (60+3)2 3600+360+9 3969 area of entire square area of white region A (3x + 2)2 (2x + 3)(2x - 3) (3x + 2)2 – (2x + 3)(2x - 3) (9x2 + 12x + 4)-(4x2 - 9) 9x2 + 12x + 4- 4x2 - 9 5x2 + 12x + 13 0.5 0.5 0.5 0.5 0.5 0.5G 0.5G 0.25G2 0.5Gg 25 50 25 0.5 0.5g 0.25g2 0.5g 121m2 -22m + 22m - 4 (9c-1)(9c-1) 81c2 - 9c - 9c + 1 121m2 - 4 81c2 - 18c + 1 992= (100-1)2 =1002 - 2∙100∙1 + 12 =1000 – 200 + 1 =9801 Entire region = (x + 5)2 White region = (x + 3)(x - 3) Blue region = entire – white X2 + 10x + 25 - (x2 - 9) X2 + 10x + 25 - x2 + 9 10x + 34 R (round) W(wrinkled) R RR RW W RW WW ¼ = 25% x + 17 x - 12 0 0 -17 0 0 12 -17 12 x-9 9 0 3 7 0 0 1 2 0 -5 0 0 3 7 1 2 -5 3x - 7 = 0 X =7 3 x +1=0 x = -1 x+2=0 x = -2 4x + 9 = 0 X = 4 9 4 7 Solutions are: , -2, 9 3 3 -7 3 (7) 4 2 2 2 (- 2 - 3)(-2 + 7) = -25 -2 25 -3 3 (0, 5) 6 5 x + 6=0 x = -6 x + 1=0 x = -1 •The x intercepts are x = -8, x = 8 •x coordinate of the vertex is the average of the x intercepts: 8 - 8= 0 2 •Substitute to find the y coordinate 5 y (0 8)(0 8) 20 16 •The vertex is (0, 20) •The arch is 8 - (-8), or 16 feet wide at the base and 20 feet high sum product 12 negative 5 p+q 12 pq 5 -16 39 -16 13 3 39 -13 3 different signs -12 -64 (x - 16)(x + 4) -16 4 different signs 10 -75 (x + 15)(x - 5) 15 -5 -8 16 1 12 1 -8 1 9 12 is can 92 - 4(1)(-1) 85 is not cannot -1 - (x -12)( x + 6) (x - 12) (x + 6) x - 12 12 x+6 -6 12 -6 10=(x + 6)(x + 3) -6·3 10= x2 + 9x + 18 -18 0=x2 + 9x -10 0=(x +10)(x -1) x + 10 = 0 or x – 1 = 0 x = -10 or x = 1 -10 1 (x + 7)(x - 6)=0 x=-7,6 X2 -17x -38 (x + 2)(x - 19) x = -2, 19 1 1 3 7 3 10 21 1 7 3 1 3 22 7 (1x + 7)(3x + 1) 3 3 14 3 3 5 14 5 Multiply 3·5= 15 Products= 15 ·1, 3·5 Sums/Difference= 15 + 1= 16, 15-1=14 3 + 5= 8, 3-5=-2 Which numbers’ product is 15 and sum is 14? 3x2 + 15x -1x - 5 (3x2 + 15x) + (-x - 5) 3x(x + 5) – 1(x + 5) 3(3x - 1)(x + 5) Put in standard form: 28n2 + 54n + 18 = 0 Factor out 2: 2(14n2 + 27n + 9)=0 Multiply 14 x 9 = 126 Products: 1 x 126 , 2 x 63, 3 x 42, 6 x 21, 9 x 14 Sums: 1+126=127, 2+63=65, 3+42= 45, 6+21=27, 9+14= 25 Which numbers’ product is 126 and sum is 27? Rewrite problem : (14n2 + 21n + 6n + 9) = 0 Group: (14n2 + 21n)+(6n + 9)=0 7n(2n + 3)+ 3(2n + 3)=0 2(7n + 3)(2n + 3)=0 Answer: 7n+3=0, 2n+3=0 3 3 n= , 7 2 28n2 54n 2 14n2 27n 2 7n + 3) 7n + 3 18 3 7 9 2n + 3) 2n + 3 3 2 3 7 3 2 -32 -16 60 60 100 100 -16 60 100 -4(4t2 - 15t - 25) -4 -4(4t + 5)(t - 5) 4t + 5 t-5 -1.25 5 -1.25 5 5 5 Multiply 28 x 12= 336 Find Products: 2 x 168, 3 x 112, 4 x 84, 6 x 56, 7 x 48, 8 x 42, 12 x 28, 16 x 21 Sums: Instead of finding ALL the sums, which numbers Are capable of adding or subtracting to equal -5? 12+28=40, 12-28=-16, 16+21=37, 16-21= -5 Rewrite problem: 28x2+16x-21x-12=0 Group: (28x2+16x) +(-21x-12)=0 Factor: 4x(7x+4)-3(7x+4)=0 Rewrite: (4x-3)(7x+4)=0 Factor out a 2: 2(6n2-13n+6)=0 Multiply 6 x 6= 36 Find Products: 1 x 36, 2 x 18, 3 x 12, 4 x 9, 6 x 6 Sums: Instead of finding ALL the sums, which numbers Are capable of adding or subtracting to equal -13? 9+4= 13 but we need a -13 How about -9-4= -13? Rewrite problem: 6n2-9n-4n+6 Group: (6n2-9n) + (-4n+6) Factor: 3n(2n-3)-2(2n-3)=0 Final factor form: 2(3n-2)(2n-3)=0 don’t forget the 2 we factored At the beginning of the problem. Rewrite in standard form: 33x2-51x+18=0 Factor out a 3: 3(11x2-17x +6)=0 Multiply 11 x 6 = 66 Find the Products: 1 x 66, 2 x 33, 3 x 22, 6 x 11 Sums: Find a product whose sum is -17 -11-6=-17 Rewrite: 11x2-11x-6x+6=0 Group: (11x2-11x) +(-6x+6)=0 Factor: 11x(x-1) -6(x-1)=0 3(11x-6)(x-1)=0 Set each problem equal to 0 11x-6=0, x-1=0 x= 1, 6/11 Sf = ½ gt2+vit+si Si= initial position Sf= final position, g = -32 feet per second Vi= initial velocity, t = time 0 = ½ (-32)t 2 +140t+200 4( 4t(t-10)+ 5(t-10))=0 0=-16t 2 +140t+200 0= -4(4t 2 -35t-50) 0= -4(4t 2 -40t+5t-50) -4(4t 2 -40t)+(5t-50)=0 -4(4t+5)(t-10)=0 t? 4t+5=0, t-10=0 t=-5/4, 10 t =10 seconds, why? n 15 (n+15)(n-15) 11x 12 (11x+12)(11x-12) 3 81 49 3 9p 7 3(9p+7)(9p-7) x x+20 3y 3y-2 x 20 20 3y 2 5 C 8 5 c c 5 c+4 16 4 2 4 (3x)2-52 (3x+5)(3x-5) 3x+5 3x-5 2 1 3 2 1 3 2 1 3 1 2 3 2 10 x 2 3 4 2 3 2 x 10 4 2 2 3 2 x 10 4 2 3 x 10 4 3 3 4 3 3 4 128 0 128 256 -16(1t2-8t +16) -16(t-4)2 t-4 256 4 4 4 2 2 4 1 5m 2 1 4 1 4 m m 5 2 5 2 9x 2 84 x 196 3x 14 0 (3x )2 2(3x )(14) 14 2 2 x 4 3 (3x 14)2 V=256, s=0, h=1024 -16t2+256t+0=1024 -16t2+256t-1024=0 (4t)2-2(4t)(32)+322 16t2-256t+1024 (4t2-32)2=0, t=8 seconds 2·7·x·x·x 7·11·x·x 6·7·x 7·x=7x 7x(2x2-11x-6) 7x(2x+1)(x-6) 10x3(25x2-80x+64) 10x3(5x-8)2 5x 5x(x2+1) (5x+2)(x2+1) 2x2 2(x2+1) 3x2(4x2+12x+9) 3x2(2x+3)(2x+3) 3x2(2x+3)2 3x3(3x2+90x+5) (32x3-16x2)+(-98x+49) 16x2(2x -1)+49(-2x+1) (16x2+49)(2x-1) (4x+7)(4x-7)(2x-1) (45x3+9x2)+(5x+1) 9x2(5x+1)+1(5x+1) (9x2+1)(5x+1) 3x3 3x x2-1 x+1 -1 1 3x+2 x-1 -2/3 2 2 x2-1 x2-1 3x+2 7x 3x2+4x-2 7x 0 0.39 -1.72
© Copyright 2026 Paperzz