RatesofChange Letfbeafunction.Givenaninterval[x1,x2], wedefinetheaveragerateofchangeoff withrespecttox overtheinterval[x1,x2] to betheratio f(x2)–f(x1) , x2–x1 assumingthatf isdefinedatx1 andx2. Thursday,January19,2017 RatesofChange Ex:Supposeyouhavethefollowingdataregardingthe humanpopulationoftheworld.Whatistheaveragerate ofchangeinhumanpopulationbetweentheyears1950 and1990? x (years since1900) P(x) Population (inmillions) 0 1650 10 1750 20 1860 30 2070 40 2300 50 2560 60 3040 70 3710 80 4450 90 5280 100 6080 110 6870 Well,bydefinition,theaveragerateof changebetweentheyears1950-1990is givenby P(1990)–f(1950) 1990−1950 = 5280−2560 1990−1950 = 2720 40 =68millionpeopleperyear. unitofmeasurement RatesofChange Population(inmillions) Ex:Supposeyouhavethefollowingdataregardingthehuman populationoftheworld.Whatistheaveragerateofchangein humanpopulationbetweentheyears1950and1990? (1990,P(1990)) P(1990)-P(1950) (1950,P(1950)) 1990-1950 yearssince1900 Anotherwaytothink aboutthevalueofthe averagerateofchangein humanpopulation betweentheyears19501990isastheslopeof thelinethroughthe points(1950,P(1950)) and(1990,P(1990)) RatesofChange Ex:Supposeadynamiteblastkicksupa rockintotheair.Thetablebelowgives theheight(infeet)oftherockattimet (inseconds). t (inseconds) h(t) Height oftherockfrom theground (infeet) 0 0 2 256 4 384 6 384 8 256 10 0 Wecanplotthedatapoints: RatesofChange Ex:Supposeadynamiteblastkicksupa rockintotheair.Thetablebelowgives theheight(infeet)oftherockattimet (inseconds). t (in seconds) h(t) Height of therock fromthe ground (infeet) 0 0 2 256 4 384 6 384 8 256 10 0 Havingplottedthedatapoints,wecantry andfindafunctionh whichaccurately modelsthedatapoints: Wecanplotthedatapoints: h(t) RatesofChange Letfbeafunction.Givenapointa,wedefinetheInstantaneousrateof changeoff withrespecttox ata tobethelimit limx→a f(x)–f(a) , x-a assumingthelimitexists. Note:Anyarbitraryx valuecanbewrittenasx=a+h,forsomevalueh.Then, sayingx goestoa isequivalenttosayingh goesto0.Thus,wecanequivalently definetheInstantaneousrateofchangeoff withrespecttox ata tobethe limit limh→0 f(a+h)–f(a) h Noticethisispreciselytheslopeofthetangentlineatx=a! Thursday,January19,2017 RatesofChange Ex:Supposeadynamiteblastkicksupa rockintotheair.h(t)givestheheight(in feet)oftherockattimet (inseconds). Estimatetheinstantaneousrateof changeindistance(i.e.,velocity)atx=6 • Thevelocityatx=6isgivenbytheslopeofthe tangentlineL ofh atthepoint(6,384). • WeknowthatwecanapproximatetheslopeofLby theslopesofthesecantlinesgoingthroughthepoint (6,384). Namely,wecanusethesecantlineL1 goingthrough (4,384)and(6,384),andthesecantlineL2 going through(8,256)and(6,384),togetlowerandupper boundsfortheslopeofthetangentline. L1 (4,384) (6,384) h(t) L (8,256) • TheslopeofL1 is0,andtheslopeofL2 is-64. • SincetheslopeofLisbetween0and-64,wecan approximateitbytakingtheaverageof0and-64, whichis-32 • Thus,theslopeofLis-32,whichmeansthatthe velocityatx=6 is L2 -32feetpersecond(ft/s). Warning:Don’tforgetyourunits! RatesofChange:ClassProblems Derivative f(a+h)–f(a) Givenafunctionf wehavethat limh→0 ,equivalently h f(x)–f(a) limx→a ,givesustheslopeofthetangentlineatx=a andthe x-a instantaneousrateofchangeoffata. Asthecourseprogresseswewillseethatthislimit,whenitexists,encodesalot ofinformation. Formally,limh→0 denotedbyf’(a). f(a+h)–f(a) iscalledthederivativeoff ata.Itisoften h Derivative Ex:Givenf(x)=4x– 3x2,findf’(2). Or Derivatives:ClassProblems
© Copyright 2026 Paperzz