NAME______________________________________DATE____________ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Classroom Strategies Blackline Master II - 1 57 _DATE____________NAME______________________________________DATE_______ Name__________________________________________________ Figure 58 ∠1 ∠2 ∠3 ∠4 ∠5 ∠6 Classroom Strategies Blackline Master II - 2 ∠7 ∠8 ______ NAME______________________________________DATE____________ Triangle Degrees in angle 1 Degrees in Degrees in Sum of angle 2 angle 3 the angles A B C D E F TYPE OF TRIANGLE A_____________________________________________________ B_____________________________________________________ C_____________________________________________________ D_____________________________________________________ E_____________________________________________________ F_____________________________________________________ Classroom Strategies Blackline Master II - 3 59 NAME______________________________________DATE____________ Degrees in Degrees in Degrees in Degrees in angle 1 angle 2 angle 3 angle 4 Sum of the angles A B C D E F TYPE OF QUADRILATERAL A_____________________________________________________ B_____________________________________________________ C_____________________________________________________ D_____________________________________________________ E_____________________________________________________ F_____________________________________________________ 60 Classroom Strategies Blackline Master II - 4 TRIANGLE PATTERNS Classroom Strategies Blackline Master II - 5 61 TRIANGLE PATTERNS 62 Classroom Strategies Blackline Master II -6 TRIANGLE PATTERNS Classroom Strategies Blackline Master II - 7 63 QUADRILATERAL PATTERNS 64 Classroom Strategies Blackline Master II - 8 QUADRILATERAL PATTERNS Classroom Strategies Blackline Master II - 9 65 QUADRILATERAL PATTERNS 66 Classroom Strategies Blackline Master II - 10 II - 11 CAROLINA NORTH NORTH CAROLINA Classroom Strategies Blackline Master 67 NAME______________________________________DATE____________ Polygon Diagonals Angle of intersection Do they bisect each other? NAME______________________________________DATE____________ Polygon 68 Diagonals Angle of intersection Do they bisect each other? Classroom Strategies Blackline Master II - 12 NAME______________________________________DATE____________ One-Inch Graph Paper Classroom Strategies Blackline Master III - 1 69 One-Centimeter Graph Paper 70 Classroom Strategies Blackline Master III - 2 NAME______________________________________DATE____________ NAME______________________________________DATE____________ Classroom Strategies Blackline Master III - 3 71 NAME______________________________________DATE____________ 72 Classroom Strategies Blackline Master III - 4 NAME______________________________________DATE____________ Classroom Strategies Blackline Master III - 5 73 NAME______________________________________DATE____________ 74 Classroom Strategies Blackline Master III - 6 OCTAGON PATTERNS Classroom Strategies Blackline Master III - 7 75 PENTAGON PATTERNS 76 Classroom Strategies Blackline Master III - 8 HEXAGON PATTERNS Classroom Strategies Blackline Master III - 9 77 NAME______________________________________DATE____________ Triangle Activities 1. Use chenille stems or pipe cleaners to make triangles with sides corresponding to the lengths (in inches) listed below. Figure 1 2 3 4 5 6 7 8 9 10 Side A 4 3 3 2 2 3 2 1 1 2 Side B 4 T 4 4 4 4 3 2 2 2 3 Side C 4 5 4 6 4 4 4 4 3 4 Makes a triangle? Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No 2. When do you think it is possible for three lengths to make or not make a triangle? 3. Classify the triangles you made as equilateral, isosceles, scalene, and the angles as right, acute, or obtuse. 4. What relationships do you see between the sides and angles of triangles? You may wish to draw more triangles to test your ideas. Be sure to explain your thinking. 78 Classroom Strategies Blackline Master III - 10 NAME______________________________________DATE____________ Discovering Diagonals I Draw the diagonals in each polygon. Indicate if they are congruent (C), perpendicular (P), bisectors (B), or lines of symmetry (S). s q u a r e r e c t a n g l e p a r a l l e l o g r a m r h o m b u s t r a p e z o i d k i t e Classroom Strategies Blackline Master III - 11 79 NAME______________________________________DATE____________ Discovering Diagonals II 1. Complete the chart below. Polygon triangle No. of sides/vertices No. of diagonals quadrilateral pentagon hexagon heptagon octagon 2. Look at the chart. What patterns do you see? Are there any predictions you can make about other polygons and the number of their diagonals? 3. Using your prediction or pattern what can you say about the number of diagonals in the following polygons. Be sure to explain your thinking. Decagon Dodecagon N-gon 80 Classroom Strategies Blackline Master III - 12 . . . Isometric Dot Paper NAME______________________________________DATE____________ . . . . . . . . . . . . . . . . . . Classroom Strategies Blackline Master . . III - 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 82 Classroom Strategies Blackline Master III - 14 Classroom Strategies Blackline Master III - 15 83 EQUILATERAL TRIANGLE GRID 84 Classroom Strategies Blackline Master III - 16 Name_______________________________________Date___/___/___ DISCOVERING DIAGONALS I Quadrilateral Number of diagonals Congruent Diagonals (yes/no) Perpndicular Diagonals (yes/no) Parallel Diagonals (yes/no) No. of pairs of congruent triangles Square Rectangle Parallelogram Rhombus Trapezoid Kite Your Figure CONCLUSIONS: Classroom Strategies Blackline Master III - 17 85 DISCOVERING DIAGONALS I Draw the diagonals in each figure. Tell whether they are congruent and/or perpendicular. RECTANGLE SQUARE Congruent? Perpendicular? Congruent? Perpendicular? PARALLELOGRAM Congruent? Perpendicular? TRAPEZOID Congruent? Perpendicular? 86 RHOMBUS Congruent? Perpendicular? KITE Congruent? Perpendicular? Classroom Strategies Blackline Master III - 18 Name_______________________________________Date___/___/___ DISCOVERING DIAGONALS II POLYGON NUMBER OF SIDES/VERTICES NUMBER OF DIAGONALS triangle quadrilateral pentagon hexagon heptagon octagon nonagon decagon CONCLUSIONS: Classroom Strategies Blackline Master III - 19 87 Name_______________________________________Date___/___/___ QUADRILATERALS 1. Use the materials provided to make quadrilaterals with sides corresponding to the lengths listed below. Record whether or not a quadrilateral is possible. Color Length of Sides (in inches) Red 3 3 3 3 Orange 4 2 Q4 2 Yellow 4 4 2 2 Blue 2 2 2 6 Green 2 2 2 4 Pink 2 4 3 3 White 2 3 3 4 Black 1 2 3 4 Does it make a quadrilateral? 2. What type of quadrilateral did each color make? 3. Make a conjecture to explain when the four lengths will or will not make a quadrilateral. 4. Which quadrilaterals have symmetry? Line or rotational? Are certain kinds of quadrilaterals always symmetric? 88 Classroom Strategies Blackline Master III - 20 Name_______________________________________Date___/___/___ EXPLORING POLYGONS POLYGON MEASUREMENT OF SIDES MEASUREMENT OF DIAGONALS Classroom Strategies Blackline Master CONCLUSIONS III - 21 89 Name_______________________________________Date___/___/___ PERFECTLY SQUARE MEASUREMENT OF DIAGONAL 90 MEASUREMENT OF SIDE OBSERVATIONS Classroom Strategies Blackline Master III - 22 ATTRIBUTE GAME Exactly one pair of adjacent, congruent sides. Four right angles. Adjacent sides are congruent. No sides are congruent. Two pairs of adjacent, congruent sides. Exactly one pair of parallel sides. Opposite sides are congruent. Diagonals bisect each other. A regular polygon. Two pairs of parallel sides. Congruent diagonals. Perpendicular diagonals. Classroom Strategies Blackline Master An irregular polygon. Exactly one pair of opposite, congruent sides. At least one obtuse angle. III - 23 91 NAME______________________________________DATE____________ Exploring Angles in Polygons A. Cut out triangles A through E. Tear off the corners of each triangleand fit them side by side with the angles touching around a point. Do each triangle separately. 1. What do you notice about the sum of the angles of these triangles? 2. Would this work for all triangles? Make some of your own and try them. B. Cut out quadrilaterals A through E. Tear off the corners of each quadrilateral and fit them side by side with the angles touching around a point. Do each quadrilateral separately. 1. What did you discover? 2. What can you say about the sum of the angles of these quadrilaterals? 3. Would this work for all quadrilaterals? Make some of your own and try them. 4. How do these results compare and relate to the results you found for triangles? 92 Classroom Strategies Blackline Master III - 24 C. Try this process with pentagons and hexagons. Explore and explain what you find. D. Make a conjecture about the relationship of the number of sides and the the sum of the interior angles of a polygon. Explain your thinking. Use your conjecture to find the sum of the interior angles of the following: octagon - decagon - n-gon - Classroom Strategies Blackline Master III - 25 93 Exploring Angles - Triangles A B C E D 94 Classroom Strategies Blackline Master III - 26 Exploring Angles - Quadrilaterals B A C D E Classroom Strategies Blackline Master III - 27 95 Exploring Angles - Other Polygons B A C 96 D Classroom Strategies Blackline Master III - 28
© Copyright 2026 Paperzz