Classical Mechanics LECTURE 9: INELASTIC COLLISIONS Prof. N. Harnew University of Oxford MT 2016 1 OUTLINE : 9. INELASTIC COLLISIONS 9.1 Examples of 2D elastic collisions 9.1.1 Example 1: Equal masses, target at rest 9.1.2 Example 2: Elastic collision, m2 = 2m1 , θ1 = 30◦ 9.2 Inelastic collisions in the Lab frame in 1D (u2 = 0) 9.2.1 Coefficient of restitution 9.3 Inelastic collisions viewed in the CM frame 9.3.1 Kinetic energy in the CM : alternative treatment 9.3.2 Coefficient of restitution in the CM 9.3.3 Example of inelastic process 2 9.1.1 Example 1: Equal masses, target at rest Before After Magnitude of velocities: I I I I I 3 vCM = m1 u1 +m2 u2 m1 +m2 = u10 = u0 − vCM = u20 u20 = −vCM = − u20 |v10 | = |u10 | = u20 |v20 | = |u20 | = u20 u0 2 Relationships between angles and speeds Angles: I Cosine rule: ( u20 )2 = ( u20 )2 + v12 − 2v1 u20 cos θ1 I v1 u0 cos θ1 = v12 I cos θ1 = I cos θ2 = v1 u0 v2 u0 as before Opening angle: I Cosine rule: u02 = v12 + v22 − 2v1 v2 cos(θ1 + θ2 ) I I But u02 = v12 + v22 (conservation of energy) cos(θ1 + θ2 ) = 0 → θ1 + θ2 = π 2 NB: Lines joining opposite corners of rhombus cross at 90◦ 4 9.1.2 Example 2: Elastic collision, m2 = 2m1 , θ1 = 30◦ Find the velocities v1 and v2 and the angle θ2 Magnitude of velocities: m1 u1 +m2 u2 m1 +m2 I vCM = I u10 = u0 − vCM = I u20 = −vCM = − u30 I |v10 | = |u10 | = I |v20 | = |u20 | = 5 2u0 3 u0 3 = u0 3 2u0 3 Relationships between angles and speeds I Sine rule: (sin 30/ 2u30 ) = (sin α/ u30 ) → sin α = 1 4 → α = 14.5◦ I β = 30 + α = 44.5◦ I sin 30/ 2u30 = sin(180 − 44.5)/v1 → v1 = 0.93u0 I Cosine rule: v22 = ( u30 )2 + ( u30 )2 − 2( u30 )2 cos β → v2 = 0.25u0 I Sine rule: (sin 44.5/v2 ) = (sin θ2 / u30 ) → θ2 = 68.0◦ 6 9.2 Inelastic collisions in the Lab frame in 1D (u2 = 0) An inelastic collision is where energy is lost (or there is internal excitation). I Take m2 at rest & in 1D. Momentum : m1 u1 = m1 v1 + m2 v2 (1) I Energy : I Square Equ.(1) and subtract 2m1 × Equ.(2) → I 7 = 12 m1 v12 + 21 m2 v22 + ∆E (2) m2 (m2 − m1 )v22 + 2m1 m2 v1 v2 − 2m1 ∆E = 0 Substitute for m1 v1 from Equ.1 to get quadratic in v2 → I 1 2 2 m1 u1 m2 (m2 + m1 )v22 − 2m1 m2 u1 v2 + 2m1 ∆E = 0 Solve, taking consistent solutions with elastic case (∆E = 0) √ 2m m u + 4m12 m22 u12 −8m1 m2 (m1 +m2 )∆E → v2 = 1 2 1 (3) 2m2 (m1 +m2 ) √ 2m2 u − 4m12 m22 u12 −8m1 m2 (m1 +m2 )∆E → v1 = 1 1 (4) 2m1 (m1 +m2 ) 1D inelastic collisions viewed in the Lab frame (u2 = 0) I We see from Equ. (3) & (4) there is a limiting case: 4m12 m22 u12 − 8m1 m2 (m1 + m2 )∆E ≥ 0 I i.e. ∆E ≤ I This corresponds to the two bodies sticking together in a single object of mass (m1 + m2 ) → v1 = v2 I From momentum cons. m1 u1 = m1 v1 + m2 v2 m1 m2 u12 2(m1 +m2 ) if v1 = v2 = v , then v = For equal mass m1 = m2 8 m1 u1 (m1 +m2 ) (the CM velocity) v2 , v1 = u1 2 1± q 1− 4∆E mu12 9.2.1 Coefficient of restitution e= General definition : = Speed of relative separation Speed of relative approach I From Equ.(3) & (4) previously √ 2m m u + 4m12 m22 u12 −8m1 m2 (m1 +m2 )∆E v2 − v1 = 1 2 1 2m (m +m ) √ 2 22 2 1 2 2 2m u − 4m1 m2 u1 −8m1 m2 (m1 +m2 )∆E − 1 1 2m1 (m1 +m2 ) I Factorizing, then simplifying, then dividing by u1 gives r q 2 )∆E e = 1 − 2(mm1 +m = 1 − ∆E T0 m u2 1 where I I 9 |v2 −v1 | |u1 −u2 | T0 = 2 1 1 2 2 µu1 with µ = T0 m1 m2 m1 +m2 (the reduced mass) We see later that is the initial energy in the CM frame, hence e is related to the fractional energy loss in this frame e = 1 completely elastic; e = 0 perfectly inelastic, in general 0 < e < 1 9.3 Inelastic collisions viewed in the CM frame Case of perfectly inelastic collision (e = 0) After collision, total mass (m1 + m2 ) is at rest in CM: I I I 10 2 KE in CM: TCM = TLAB − 12 (m1 + m2 )vCM Differentiate: Loss in KE ∆TCM = ∆TLAB (obvious) Max. energy that can be lost = TCM = 2 = 12 m1 u12 + 21 m2 u22 − 12 (m1 + m2 )vCM 9.3.1 Kinetic energy in the CM : alternative treatment 2 Revisit kinetic energy in the CM frame: TLab = TCM + 12 MvCM I TCM = 12 m1 u102 + 12 m2 u202 I 2 x10 = − m1m+m x = − mM2 x , x20 = 2 I u10 = − mM2 ẋ , u20 = I TCM = 1 2 I TCM = 1 m1 m2 2 M2 I Also m1 M x m1 M ẋ m1 (− mM2 )2 + m2 ( mM1 )2 ẋ 2 (m2 + m1 ) ẋ 2 = 1 m1 m2 2 2 M ẋ ẋ = ẋ2 − ẋ1 = u20 − u10 TCM = 1 m1 m2 2 2 M ẋ = 1 2 2 µẋ = 1 0 0 2 2 µ(u1 −u2 ) = 1 2 2 µ(u1 −u2 ) These expressions give the CM kinetic energy in terms of the relative velocities in the CM & Lab and the reduced mass µ 11 9.3.2 Coefficient of restitution in the CM I i Initial KE in the CM : TCM = 21 µ(u10 − u20 )2 I f Final KE in the CM : TCM = 12 µ(v10 − v20 )2 I i f Conservation of energy : TCM = TCM + ∆E → → → 1 0 2 µ(u1 − u20 )2 = 21 µ(v10 − v20 )2 + ∆E 0 0 2 v1 −v2 = 1 − T∆E i u10 −u20 CM 0 0 q v1 −v2 = ± 1 − T∆E i u 0 −u 0 1 2 CM i Same expression as before with T 0 = TCM e= Coefficient of restitution q |v −v | = |u2 −u1 | = 1− |v02 −v01 | |u01 −u02 | CM 1 2 LAB ∆E i TCM ONLY in CM frame can ALL the KE be used to create ∆E → For e = 0 the two particles coalesce and are at rest in CM 12 9.3.3 Example of inelastic process A calcium nucleus (A=20), mass m, travels with velocity u0 in the Lab. It decays into a sulphur nucleus (A=16), mass 45 m, and an α-particle (A=4), mass 15 m. Energy ∆T is released as KE in the calcium rest frame (CM). A counter in the Lab detects the sulphur nucleus at 90◦ to the line of travel. What is the speed and angle of the α-particle in the Lab? 13 I Energy ∆T is released as KE in the CM. vCM = u0 I Momentum in CM: 4 1 0 0 5 mv1 − 5 mv2 = 0 → v20 = 4v10 I Energy: ∆T = 12 ( 45 m)v10 2 + 1 1 02 02 2 ( 5 m)16v1 = 2mv1 1 2 → v10 = [ ∆T 2m ] 1 2 → v20 = [ 8∆T m ] I Transform to Lab by boosting by vCM (= u0 ) I cos α = I I 14 2mu02 1 2 ∆T ] Cosine rule: v22 = v20 2 + α Sine rule: sinv 0θ2 = sin v2 2 u0 v10 =[ u0 2 + 2v20 u0 cos α Solve for v2 , θ2
© Copyright 2026 Paperzz