219 PART I: Solutions to Odd-Numbered Exercises and Practice Tests Solutions to Odd-Numbered Exerdses 1. (a) -1.0 x -0.8 -0.6 -0.4 -0.2 Y -1.5708 -0.9273 -0.6435 -0.4115 -0.2014 x 0 0.2 0.4 0.6 0.8 1.0 y 0 0.2014 0.4115 0.6435 0.9273 1.5708 (c) (b) 3. (a) -10 x -8 (d) (0, 0), Symmetric to the origin -6 -4 -2 Y -1.4711 - 1.4464 -1.4056 - 1.3258 -1.1071 x 0 Y 0 (b) 2 4 6 8 10 1.1071 1.3258 1.4056 1.4464 1.4711 (c) y (d) Horizontal asymptotes: y = +-2 2 .-10 -10 -5 5 lO -2 5. tan ~)=-l~arctan(-1)- ~r4 7. arcsin(- 1) = -7 ~ sin - 9. (a)y = arccos~cosy = ~for0<y<’n’~y = 3 ~ 1.047 (b) y=arccos0~cosy=0for0<y<-rr~y=--~ 1.571 2 11. (a)y=arccos(--~-)~cosy2-(b) y = arcsin 13. (a) y = arccos - -~for0 < y < "n’~y=m~2.356 4 sin y - - ~ for ~ -~ --~< y<-~,y=-~-~ ~r "n" - 0.785 ~ cos y = -~ for 0 < y < ~r ==> y = --f- ~ 2.094 (b) y = arcsin-~-- ==> siny = -~- for--~<y<-~==>y = 4 0.785 =-1 220 PART I: Solutions to Odd-Numbered Exercises and Practice Tests ¯ "rr ~ ¢r - 1.571 15. (a) y=arcsin(-1)~siny=-lfor-7 < y < ~ y=-7~ (b) y=arccosl~cosy= lforO < y< ~y=O 17. y = arccos x x = cos y 19. (a) arcsin(- 0.75) ~ -0.85 (b) arccos(-0.7) ~ 2.35 21. (a) arcsinO.41 ~ 0.42 23. (a) arctan 0.98 ~ 0.78 25. f(x) = sin x g(x) = arcsin x (b) arctan 4.7 -~ 1.36 (b) arccos 0.36 ~ 1.20 y=x 4 27. cos 0 = - x+l 10 Ix+ 1\ 0 = arctan/---i--O--) 29. tan 0 - x 4 0 = arccosx 31. tan (arctan 35) = 35 33. sin (arcsin (-0.1)) = -0.1 35. arccos cos- = arccos 0 = ~- 37. arcsin (sin ]ff) = arcsin 3 39. Let u = arcsin 5’ qr 3 sinu = "~, 0 < u <~. =secu- adj -4 41. Let u = arctan - , tan u = 12 5’ csc arctan - ~ < u < O. 2 = csc u -opp - 12 221 PART I: Solutions to Odd-Numbered Exercises and Practice Tests .6 45. Let u = arctan ~, 11 sinu ..... <u<O. 8’ 2 tan arcsin - 6 qr tanu = -i-i-, 0 < u < ~. = tan u = ~ - 47. Let u = arctan x, 55 cot arctan = cot u - opp 6 49. Let u = arcsin(x - 1), x--1 sin u = x -- 1 -1 x tan u = x = -. 1 1 sec[arcsin (x - 1)] = sec u - sin(arctan x) = sin u = op_2 hyp x 1 51. Let u = arctan-, hyp 1 adj - ,/2X- x~ x-h 53. Let u = arcsin , 1 tan u = -. sin u - x x-h x-h cot arctan = cot u - opp --x -" COS/~ = ~/r2 - (x- h)2 r 222 PART I: Solutions to Odd-Numbered Exercises and Practice Tests ~/36 - x2 57. If arcsin - u, 6 ~36 - xz then sin u = 6 x Asymptote: x = 0 These are equal because: x arcsin ~/36 - x2 x - arccos6 6 x Let u = arccos 2 tan(arccos ~) = tan u - 59. If arccos x-2 2 then cos u - X 61. y = arcsin2 Domain: -2 _< x _< 2 - u, x-2 2 Range: -~ _< y < --2 1.57 / x-2 arccos 2 x 2 - arctan ~/4x - x2 x-2 63. g(t) = arceos(t + 2) 3.14 Domain: - 3 < t < - 1 This is the graph of y = arccos t shifted two units to the left. o 223 PART I: Solutions to Odd-Numbered Exercises and Practice Tests f(x) = ¢r + arctan x Domain: (- x 67. f(x) = arccos4 Domain: [-4, 4] Range: [0, ,n’] ,3.14 6.28 o 69. f(t) = 4 cos ~t + 3 sin "rrt = ./42 + 32 sin ~t + arctan = 5 sin(~rt + arctan ;) 6 -6 ThegraphsuggeststhatAcosoot+Bsinoot=./A2+b2sin(wt+arctan~)istme. 71. (a) tan 0- s 750 (b) When s = 400, 0 = arctan \7--f6/~-" 0.4900 (~ 28.07°) Whens = 1600, 0 = arctan (17@00) ~ 1.1325 ( ~ 64.89°) 73. (a) O= arctant2~)~ 26.0o/n\ (0.45rad) h (b) tan (26.0°) = 5--d h = 50 tan (26.0°) ~ 24.4 feet 41 41 224 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 75. Area = arctan b - arctan a (a) a=0, b= 1 Area = arctan 1 - arctan 0 =_~r _ 0 = ~ 4 4 (c) a=0, b=3 Area = arctan 3 - arctan 0 ~ 1.25 - 0 = 1.25 (b) a=-l,b= 1 Area = arctan 1 - arctan(-1) (d) a=-l,b=3 Area = arctan 3 - arctan(-1) = 1.25 77. (a) tan0- x 20 x 0 = arctan20 (b) When x = 5, 5 0 = arctan ~ ~ 14.0°, (0.24 rad). 12 When x = 12, 0 = arctan ~ ~ 31.0°. = (0.54 rad.). sin x 79. False. tan x = ~ ¯ COS X 81. y = arcsec x if and only if sec y = x where x < - 1 t_j x >_ 1 and 0 < y < "n’/2 and ,n’/2 < y < The domain of y, arcsec x is (-c~, -1] U [1, ~) and the range is [0, "rr/2) U (’rr/2, ~r]. -2 -1 t ........... 83. (a) y = arcsec ~ ==> sec y = ,f~ and 0 <_ y < _-- U _-- < y _< ,rr ==> y = -: 2 2 4 (b) y = arcsec 1 ==> secy = 1 andO<y<~t_J-~<y<,rr=:~y = 0 5qr (c) y = arccot(-.4r~) ==> ~ot y = - V~ and 0 < y < "rr ==~ y - 6 (d) y = arccsc 2 ==,, csc y = 2 and -~ < y < 0 U 0 < y < -~ ==> y 6 225 PART I: Solutions to Odd-Numbered Exercises and Practice Tests y = arctan(-x) 85. tan y = -x, --2 < Y < z 87. Y2=~--Yl 1 arctan x + arctan- = yl + Y2 2 x -tan y = x tan(-y) = x, --2 < -y < 2 arctan(tan(-y)) = arctan x -y = arctan x y = -arctan x Yl X X 89. arcsin x = arcsin ]- = arctan ~ _ x2 91. -585° coterminal with 720° - 585° = 135°. Quadrant II Reference angle 0’= 45° sin (- 585°) ~ 93. 19~r 19~r 5~r coterm!nal with 6~r - 4 - 4 " Quadrant III Reference angle 0’ = -4 cos (- 585°) = 2 tan (-585°) = - 1 cos -~ = 2 4 95. y=2-cos(x+ y Asymptotes: x = 0, x = 2¢r, x = -2~r,... 6o 2. -2-
© Copyright 2026 Paperzz