1 Pair correlation and pair collectivity in neutron-rich nuclei M. Matsuo (Niigata U.) H. Shimoyama (Niigata U) Y. Ootaki (Niigata U) Y. Serizawa (Niigata U) D.Y. Pang (Peking U.) J. Lee (RIKEN) Y. Aoki (RIKEN) 1. Surface enhancement & di-neutron correlation 2 T 2. Two-neutron t transfer t f as a probe b p beyond y the N=82 shell closure Sn isotopes Bose condensation and strong coupling pairing: BCS-BEC crossover Leggett 1980, Nozieres & Schmitt-Rink 1985 BEC Interaction: In free space: BCS Strong Interaction: Bound pair (boson) is already formed Crossover In medium: Condensate of bosons In free space: In medium: Weak No bound pair is formed Bound pairs (Cooper pairs) are formed, then condensate Average distance d a Size of correlated pair /d<<1 Pairing gap /eF>1 Scattering length a & density /kFa > 1 /d = 0.2 ~ 1.10 /d>1 /eF= 1.3 ~ 0.2 /eF<<1 /kFa = -1 ~ 1 /kFa < -1 k F3 2 3 Strong coupling pairing in dilute matter & BCS-BEC crossover 2 “Large” Large pair gap vs vs. Fermi energy /eF > 0.2 0 2 at low-densities Monte-Carlo calculation Mean-field calculation (BCS approx.) /0 10 10-3~ 0.5x10-1 /eF /0 10-4~ 2x10-1 1 crossover 0.1 0.01 10-4 Gezerlis & Carlson, PRC81,025803 (2010) 10-3 10-2 /0 10-1 10-0 MM, PRC73,044309(2006) 3 “Dilute matter” in n-rich nuclei esp Weakly bound many y neutrons proton s Un Up neutrons density n Neutron skin Dilute(unsaturated) matter n/0=1/2 – 10-2(?) N Nucleon deensity n/p >>N/Z Tanihata et al. PLB287 (1992) p r 11Li 密度 図 R thikness < 1-2fm(?) Neutron halo L Long tail t il n/0 < 10-2(?) r Enhancement of pairing at surface and d tail t il in i neutron-rich t i h nuclei l i 1. Spatially p y correlated halo neutrons in 11Li and 6He,, etc G.F.Bertsch, H.Esbensen, Ann. Phys. 209(1991) 327 Coulomb break-up exp. on 11Li n n Nakamura et al. PRL96,252502 (2006) nn=48+14-18 deg Rc,2n=5.01+-0.32 fm Charge radius Mueller et al. PRL99,252501 (2007) 2. Medium & heavy y mass n-rich nuclei with several weakly y bound neutrons Surface enhancement of pairing Dobaczewski et al, PTPS146,70(2002), EPJA15,21(2002) Spatial correlation In n-rich nuclei NB. In stable nuclei Matsuo, Mizuyama, Serizawa PRC71,064326(2005) Pillet, Sandulescu, Schuck, PRC76, 024310 (2007) Ibarra et al. NPA288, 397 (1977) Janouch & Liotta PRC27,896 (1983) Pankratov, et al. PRC79, 024309 (2009) etc etc 4 5 132Sn and beyond y Neutron orbits One-neutron separation energy es.p.HF 0 -5 82 h11/2 NNDC (0.66) (0 66) (0.27) -0.25 -1.99 f5/2 p1/2 p3/2 f7/2 -7.68 -10 Hartree-Fock for 132Sn Skyrme SLy4 Pairing in the density functional theory 6 In the present work, we analyse neutron-rich Sn S isotopes using Skyrme energy density functional (HFB) + linear response theory (QRPA) Given the Skyrme functional + pairing functional E ESkyrme [ , , , , j , s , J ] E pair [ , ~, ~ * ] Skyrme functional Parameter set: SLy4 Ground state DDDI pairing functional Using the pair density ~* (r ) (r ) (r ) solving the Hartree-Fock Bogoliubov equation in the coordinate-space Hartree Fock pot. Hartree-Fock pot pair pot pot. Collective excitations Normal modes of time-dependent Hartree-Fock Bogoliubov equations 7 Models of pairing functional DDDI-matter, reproducing matter pair gap matter(BCS) DDDI a-18 0.59 v0= -458.4 ← ann= -18.5 fm Vn [ n ] v0 1 0.845 n / 0.08 0 71 0.71 on density DDDI-mix Linear weak dependence 1 v0= -292 ← ann = -1.4 fm Vn [ n , p ] v0 1 0.5 n p / 0.16 DIDI volume No density dependence DIDI-volume v0= -195 ← ann = -0.63 fm vol a-1 Vn [ n , p ] v0 average pair i gap iin Sn S istopes i t Different low-density low density limit V( ) V(r) vol a-1 DDDI a-18 Distance from nuclear center S ti l correlation Spatial l ti off Cooper C pair i Spatial correlation in 142Sn Probability distribution of the Cooper pair wave function 2 pair (r1 , r2 ) (r1 ) (r2 ) 2 One neutron is fixed at r1=7 fm (slightly outside) Plotted on the plane of r2 z2 Probability for Cooper pair to be correlated at short distances r < a few fm is significantly enhanced at R > Rsurf x2 DDDI a-18 8 Large probability at short relative distances Probability distribution in R-r 2 2 2 Pc ( R , r ) R r d | pair ( R , R r2 ) | r 2 10 142Sn R (fm)) 8 6 4 2 0 r (fm) Probability for Cooper pair to be correlated at short distances r < a few fm is significantly enhanced at R > Rsurf R n r n 9 di-neutron correlation vs. single-j pairing Single-j J=0 pair (3p3/2)2 R (fm) full HFB r (fm) 10 Coherence length, not the best way to see Rms radius of ‘Cooper Cooper pair pair’ as a function of R 142Sn r2 2 r Pc ( R, r )dr R Pc ( R , r ) dr n r n V0 varied R It is influenced by geometrical effect of finite volume [1] Pillet, Sandulescu, Schuck, Berger, PRC81 (2010) But also by the surface spatial correlation. [2] Hagino et al J Phys.G37 (2010) r 12 11 Pair contact probability r < 2.6 fm Probability of pair at short relative distances within the interaction range reffff p( R) n R Pc ( R, r )dr Effective range 2.6fm r < reff n R 0 142Sn DDDI a-18 r (fm) Volume pairing a-1 Single-j Cooper pair 13 Pair transfer as a p probe to the surface pairing Pair transfers in neutron-rich Sn isotopes: 132Sn~ Pair removal (p t) (p,t) E. Khan et. al, PRC69, 014314 (2004); ibid PRC80,044328 (2009) B. Avez, et. al, PRC78,044318 (2008) MM, Y.Serizawa PRC82, 024318 (2010) H. Shimoyama, MM, arXiv:1106.1715 Pair addition (t p) (t,p) 14 Pair transfer exp. p on n-rich nuclei 11Li I. Tanihata et al. PRL 100, 192502 (2008) 11Li 6,8He +p→ 9Li Sensitivity to nn-correlation +t A. Chatterjee et al. PRL 101, 032701 (2008) A. Lemasson et al. PLB 697, 454 (2011) 6He + 65Cu → 67Cu* + 4He → 66Cu + 4He + n → 66Cu* + 5He → 66Cu + 4He + n Dominance of 2n-transfer 2n transfer 32Mg K. Wimmer et al. PRL 105, 252501 (2010) 30Mg +t→ 32Mg +p Shape coexisting 0+2 state Collective twotwo-neutron transfers in surperfulid nuclei 15 This standard picture of the two‐neutron transfer modes may be modified ? Pairing vibration Pairing vibration + + 02 weak + 02 02 weak + + 0gs A-2 0gs + 0gs Strong ~2 Pairing rotation A strong A+2 Pairing rotation superfluid phase D. R. Bes , et. al, NP(1966) , , ( ) R. A. Broglia , at. Al, NP(1973) open-shell p nuclei E Pairing vibration Pairing rotation 17 Im⊿ R ⊿ Re⊿ 16 Ground state pair transfer 02 2n-add/removal : transition density and strength 0 gs , N 2 (r ) (r ) 0 gs , N B (P0) 0 gs 21 21 0 HFB (r ) (r ) 0 HFB ~ (r ) gs-gs gs gs transition ~ (r )r 2 dr Y ( r ) ( r ) d r 0 4 gs 00 0gs 0gs 134Sn Dobaczewski et al, PRC53, 2809 (1996) Pair transfer transition density (form factor) 02 add/remove 136 Sn Hartree-Fock single-particle energy in 142Sn es.p. sp 142-150Sn 0 120-130Sn 134-140Sn 2n add 2n‐add (0.09) (0.01) ‐0.23 ‐0.84 p1/2 p3/2 ‐2.62 f7/2 [MeV] N=82 ‐5 -10 R1/2 ‐7.68 h11/2 Ground state pair transfer strength in >132Sn 2n-add/removal transfer amplitude and strength 0 gs , N 2 (r ) (r ) 0 gs , N 02 0 HFB (r ) (r ) 0 HFB ~ (r ) 21 B (P0) 0 gs Y00 ( r ) (r )dr 0 gs 4 ~ (r )r 2 dr 134Sn Ground state 2n transfer is significantly increased in very n-rich i isotopes( ( >140Sn) S ) A 21 gs-gs transition 0gs Pair transfer strength 02 0gs add/remove 136 Sn Pair gap squared 2 132Sn 17 Pair transfer modes in Skyrme HFB +QRPA Given the Skyrme functional + pairing functional E ESkyrme [ , , , , j , s , J ] E pair [ , ~, ~ * ] Hartree-Fock-Bogoliubov Hartree Fock Bogoliubov ground state Linear response eq. Landau-Migdal approx. (r ) (r ' ) Vext (r ' ) ~ ( r ) dr ' R ( r , r ' , ) ( r ' ) 0 * * ~ (r ) (r' ) Response function (ph, (ph pp, pp hh) R0 ( r , r ' , ) dEG ( r , r ' , E )G ( r ' , r , E ) C particle-hole density (r , t ) (r ) (r ) pair -addition density ~* (r, t ) (r ) (r ) pair i -removall density d it ~(r, t ) (r ) (r ) pair-addition transition density L , N 2 YLM (r ) (r ) 0 gs , N pair-removal transition density L , N 2 YLM (r ) ( r ) 0 gs , N N 02 02 21+ 21+ 0gs 0gs Add/remove N+2 18 19 Pair vibration: Excited 0+ pair transfer Strength function for the pair transfer 02 02 0gs Pair addition/removal operator A‐2 25 10 addition 5 0 1 2 3 4 5 6 134Sn 15 7 removal 8 9 strength h strength h 10 15 A+2 20 120Sn 15 10 A 25 20 5 0gs 0gs 5 0 5 10 15 20 E ( MeV) E ( MeV) addition 1 2 3 4 5 6 7 8 9 removal 20 E ( M V) E ( MeV) The pair addition strength to the pair vibration 0+ state in 134Sn is large. The pair vibrational state of 134Sn is a narrow resonance though it is located above the one‐neutron separation energy. 21 As we explain below, this pairing vibrational mode in 134Sn is quite anomalous. 20 Anomalous Pairing Vibration 02 02 0gs 0gs A gs‐gs A+2 + Pair addition strength of pairing vibrational mode Ratio ( 02 vs gs ) less than 10 % in stable nuclei R. A. Broglia, O. Hansen, and C. Riedel (1973) 5 Sn isotopes 1 138Sn s strength 4 22 3 Large strength ~several several times times 0.8 136Sn 134Sn 140Sn BPad 0; gs PV BPad 0; g gs g gs 0.6 132Sn 2 0.4 Anomalous 1 0.2 0 0 100 110 120 A 6090% 130 140 150 100 110 120 130 A 140 150 Anomalous Pairing Vibration Transition density of pairing vibrational mode 21 Hartree-Fock single-particle energy in 134Sn es.p. 2n‐add (0.66) Very long tail r~ 15 fm r2P(ad)00(r) [ffm‐1] 0.6 0.5 120‐130Sn 0.4 132‐140Sn p1/2 p3/2 ‐2.14 f7/2 [MeV] ‐5 N=82 0.3 ‐7.68 0.2 0.1 h11/2 The transition densities to the pair vibrational mode of 132‐140Sn have a long tail have a long tail. 0 -0.1 0 23 0 (0.27) ‐0.36 2 4 6 8 10 r [fm] 12 14 16 By adding two‐neutrons in the weakly bound p orbits, we can h have a long tail. l il The weakly bound p orbits play an important role !! 22 Relation to the enhanced ground state transfer 02 02 0gs 0gs A gs‐gs A+2 25 es.p. Pair ad ddition sstrength Sn isotopes (0.66) 20 0 15 Ground state transfer p orbits occupied in ground states p orbits occupied in excited states 10 (0.27) ‐0.36 p1/2 p3/2 ‐2.14 f7/2 [MeV] ‐5 5 N=82 pairing vibration 0 ‐7.68 100 24 2n‐add 110 120 130 140 150 h11/2 A The anomalous pairing vibration in 132‐140Sn appears as a precursor of large enhancement of the ground state transfer beyond A=140. 23 DWBA cross section Ags ( p , t ) A-2gs Code TWOFNR One-step DWBA Z Zero-range approx. 24 Conclusions Neutron rich-nuclei exhibit enhanced neutron p pairing g in the surface region. Spatial Spat a correlation co e at o of o Cooper Coope pa pair at short s o td distances sta ces A promising probe is two-neutron transfers in neutron-rich >132Sn isotopes. 132--140— 140 Sn Enhanced ground state transfer in 132 Anomalous pairing vibration in 134--140Sn as a precursor Weakly bound p-orbits play a central role Ref. H.Shimoyama, MM, arXiv:1106.1715 MM, Y.Serizawa PRC82, 024318 (2010)
© Copyright 2026 Paperzz