derivative Log[absolute[Sec[x] Tan[x]]] In[15]:= Assuming úLogø is the natural logarithm È Use the base 10 logarithm instead Derivative: Hide steps Possible derivation: â HlogH secHxL tanHxL¤LL âx â HlogH secHxL tanHxL¤LL Use the chain rule, âx âu âx u , where u tanHxL secHxL¤ and True: â H secHxL tanHxL¤L âx secHxL tanHxL¤ â H tanHxL secHxL¤L Use the chain rule, âx ¢ Abs HtanHxL secHxLL I âu âx ¢ Abs HuL, where u tanHxL secHxL and True: â HtanHxL secHxLLM âx secHxL tanHxL¤ â Hu vL v âu âv , where u secHxL and v tanHxL: âx âx âx â â ¢ Abs HtanHxL secHxLL IsecHxL I HtanHxLLM + tanHxL I HsecHxLLMM âx âx Use the product rule, +u secHxL tanHxL¤ The derivative of tanHxL is sec2 HxL: ¢ Abs HtanHxL secHxLL ItanHxL I â HsecHxLLM + sec2 HxL secHxLM âx secHxL tanHxL¤ The derivative of secHxL is tanHxL secHxL: Isec3 HxL+tanHxL HtanHxL secHxLLM Abs¢ HtanHxL secHxLL secHxL tanHxL¤ secHxL is the secant function » z¤ is the absolute value of z » logHxL is the natural logarithm » Plots: 20 2 Untitled-1 20 10 x -2 Π -Π 2Π Π -10 -20 min max 20 10 x -20 10 -10 20 -10 -20 min max Alternate forms: More 2 tanHxL + cotHxL secHxL HsinHxL + cscHxLL Isin2 HxL + 1M cscHxL secHxL cotHxL is the cotangent function » Alternate form assuming x is real: sinH2 xL 4 sinHxL cosHxL - cosH2 xL + 1 HcosH2 xL - 1L HcosH2 xL + 1L Roots: Step-by-step solution x 2 Π n - ä tanh-1 3-2 2 » 2 H3.14159 n - 0.440687 äL , n Î Z x 2 Π n + ä tanh-1 3-2 2 » 2 H3.14159 n + 0.440687 äL , n Î Z x 2 Π n - ä tanh-1 3+2 2 » 2 H3.14159 n - H1.5708 + 0.440687 äLL , n Î Z x 2 Π n + ä tanh-1 3+2 2 » 2 H3.14159 n + H1.5708 + 0.440687 äLL , n Î Z tanh-1 HxL is the inverse hyperbolic tangent function » Z is the set of integers » Properties as a real function: Approximate forms Domain: Π 8x Î R : Hx + Π > 2 Π c2 and 2 x + Π < 4 Π c2 and c2 , c1 Î ZL or K- 2 < x - 2 Π c2 < 0 and c2 , c1 Î ZO Untitled-1 Π or K0 < x - 2 Π c2 < 2 Π and c2 , c1 Î ZO or K 2 < x - 2 Π c2 < Π and c2 , c1 Î ZO< Periodicity: Periodic in x with period Π Series expansion at x=0: 1 x 29 x3 5x + + 3 50 x5 + 45 189 + OIx6 M Indefinite integral: à HcscHxL secHxL + tanHxLL â x logHsinHxLL - 2 logHcosHxLL + constant Step-by-step solution 3
© Copyright 2026 Paperzz