Mathematical Tables Trigonometric sin tan = cos cot = tan1 sec = cos1 cosec = sin1 sin( ) = sin cos( ) = cos sin(A B) = sin A cos B cos A sin B cos(A B) = cos A cos B sin A sin B A tan B tan(A B) = 1tantan A tan B cos A 2 B cos A + cos B = 2 cos A+B 2 A+B cos A cos B = 2 sin 2 sin A 2 B cos = sin 2 = cos sin 2 sin (90o ) = cos cos (90o ) = sin 1 2 cos = 2 [1 + cos (2 )] sin2 = 21 [1 cos (2 )] cos3 = 41 [3 cos + cos (3 )] sin3 = 41 [3 sin sin (3 )] sin2 + cos2 = 1 1 + cot2 = cosec2 cos2 sin2 = cos (2 ) 2 sin cos = sin (2 p) a cos + b sin = (a2 + b2 ) cos( + ); where = tan p a cos +b sin = (a2 + b2 ) cos( + ); where = tan sin A sin B = 21 [cos (A B) cos (A + B)] cos A cos B = 21 [cos (A B) + cos (A + B)] sin A cos B = 12 [sin (A B) + sin (A + B)] Indicies x0 = 1 xp xq = xp+q xp = xp q xq (xp )q = xpq Logs ln x loge x log (xp ) = p log x 10 (x) log2 x = log log10 (2) log A + log B = log(AB) A log A log B = log B Complex p j= 1 j e = cos j sin j2 e = j cos = 21 ej + e j sin = 2j1 ej e j a + jb = rej ; where r = n r ej = rn ejn r1 ej 1 r2 ej 2 = r1 r2 ej( p (a2 + b2 ) and 1+ 2) = tan 1 b a 1 1 b a b a and a 0 and a < 0 Exponential ex = 1 + x + x2 2! + x3 3! + x2 2 + Logarithmic loge (1 + x) = x x3 3 where (jxj < 1) Binomial (1 + x)n = 1 + nx + n(n 1) 2 x 2! + where jnxj < 1 + (x a)2 Taylor f (x) = f (a)+(x (x) a) dfdx x=a 1 d2 f (x) 2! d2 x Derivatives and Integrals d(au) = a d(u) dx dx d(u+v) = d(u) + d(v) dx dx dx d(uv) d(v) = u dx + v d(u) dx dx d(xn ) n 1 = nx dx d(eu ) = eu d(u) dx dx ax d(e ) ax = ae dx d(sin u) = cos u d(u) dx dx d(cos u) = sin u d(u) dx dx d(sin ax) = a cos (ax) dx d(cos ax) = a sin (ax) dx + x=a +(x a)n 1 dn f (x) n! dn x x=a d(tan ) = sec2 dx d(cot ) = cosec2 dx d(sec ) = tan sec dx d(cosec ) = cot cosec dx d(ln ax) x) = d(ln = x1 dx dx Inde…nite Integrals Z Z au dx = a u dx Z Z Z (u + v) dx = u dx + v dx Z Z Z Z Z xp dx = 1 x xp+1 p+1 (p 6= dx = ln jxj u dv = uv u dv dx dx Z = uv 1) v du Z v du dx dx sin(ax) = Z 1 a cos(ax) = 1 a sin2 (ax) = Z x 2 cos2 (ax) = x 2 x sin(ax) = sin(ax) ax cos(ax) a2 x cos(ax) = cos(ax)+ax sin(ax) a2 Z Z Z cos (ax) sin (ax) sin(2ax) 4a + sin(2ax) 4a Z x2 sin(ax) = 2ax sin(ax)+2 cos(ax) (ax)2 cos(ax) a3 x2 cos(ax) = Z 2ax cos(ax) 2 sin(ax)+(ax)2 sin(ax) a3 eax dx = Z eax a Z Z Z Z Z eax a2 xeax dx = (ax 1) Z xn eax a xn eax dx = n a 1 ax2 e 2a 2 xeax dx = xn 1 eax dx eax sin (bx) dx = eax a2 +b2 [a sin(bx) eax cos (bx) dx = eax a2 +b2 [a cos(bx) + b sin(bx)] Z Z Z 1 dx (a2 +b2 x2 ) = 1 ab x2 dx (a2 +b2 x2 ) = x b2 x dx (a2 +x2 ) 1 tan a b3 b cos(bx)] bx a tan 1 bx a = 12 ln (x2 + a2 ) De…nite Integrals Z1 0 x sin(ax) dx b2 +x2 Z1 cos(ax) dx b2 +x2 = 0 Z1 sinc dx = 2b Z1 ax2 dx = 1 2 0 Z1 x2 e ax2 ab) where a > 0 and b > 0 sinc2 dx = ax p dx = 0 Z1 xn e 0 e( where a > 0 and b > 0 1 2 0 0 Z1 e ab) = 2 e( dx = a 1 4a for a > 0 p n! an+1 a for a > 0
© Copyright 2026 Paperzz