Algebra 1 - Chapter 9 Practice Test

Name: ________________________
Class: ___________________
Date: __________
Algebra 1 - Chapter 9 Practice Test
Find the degree of the monomial.
____
1. 6x8 y5
a. 5 b. 6 c. 13 d. 8
____
2. Match the expression with its name.
6x3 – 9x + 3
a. cubic trinomial b. quadratic binomial c. fourth-degree monomial d. not a polynomial
____
3. Write the perimeter of the figure.
a. 9x + 7x b. 11x + 3x + 2 c. 14x + 2 d. 14x
Simplify the difference.
____
4. (–7x – 5x4 + 5) – (–7x4 – 5 – 9x)
a. 2x4 + 2x + 8 b. –14x4 + 10x + 10 c. –14x4 – 10x + 10 d. 2x4 + 2x + 10
Simplify the product.
____
5. 8x2 (4x2 + 4y6 )
a. 12x4 + 12x2 y6 b. 32x4 + 32x2 y6 c. 12x4 + 12x2 y6 d. 32x4 + 32xy8
____
6. 7a 3 (5a 6 – 2b 3 )
a. 12a 9 – 9a 3 b 6 b. 35a 9 – 14ab6 c. 35a 9 – 14a 3 b 3 d. 12a 1 8 – 9a 3 b 6
____
7. Find the GCF of the terms of the polynomial.
8x6 + 32x3
a. x3 b. 8x3 c. 8x3 d. 8x6
1
ID: A
Name: ________________________
____
ID: A
8. Find the missing coefficient.
2
(5d − 7)(5d − 6) = 25d +
+42
a. 65 b. 5 c. –5 d. –65
____
9. Simplify using the horizontal method.
(2n 2 + 4n + 4)(4n – 5)
a. 8n 3 + 26n 2 – 36n – 20 b. 8n 3 + 6n 2 – 4n – 20 c. 8n 3 + 4n 2 – 6n – 20 d. 8n 3 – 6n 2 + 36n – 20
Find the product.
____ 10. (4p – 6)(4p + 6)
a. 16p 2 – 36 b. 16p 2 – 48p – 36 c. 16p 2 + 48p + 36 d. 16p 2 + 36
Complete.
____ 11. y2 + 15y + 56 = (y + 7)(y +
)
a. –8 b. 8 c. –7 d. 7
____ 12. z2 + 9z – 90 = (z – 6)(z +
)
a. –9 b. 15 c. 90 d. –15
Factor the expression.
____ 13. k2 + kf – 2f2
a. (k – 2f)(k + f) b. (k + 2f)(k – f) c. (k + 2f)(k + f) d. (k – 2f)(k – f)
____ 14. 6g 2 + 11g – 35
a. (3g + 5)(2g + 7) b. (3g – 5)(2g + 7) c. (3g + 5)(2g – 7) d. (3g – 5)(2g – 7)
2
____ 15. d − 14d + 49
a. (d + 7)
2
b. (d − 7)
2
c. (d − 7)(d + 7) d. (d − 49)(d − 1)
____ 16. r2 – 49
a. (r – 7)(r + 7) b. (r + 7)(r + 7) c. (r – 7)(r – 7) d. (r – 7)(r + 9)
____ 17. k2 – 16h 2
a. (k + 4h)(k + 4h) b. (k – 4h 2 )(k + 4) c. h 2 (k + 4)(k – 4) d. (k + 4h)(k – 4h)
____ 18. 50k3 – 40k2 + 75k – 60
a. 5(2k2 – 3)(5k + 4) b. (10k2 – 3)(25k + 4) c. (2k2 + 15)(5k – 20) d. 5(2k2 + 3)(5k – 4)
2
Name: ________________________
ID: A
Factor the polynomial.
3
2
____ 19. 2x + 4x + 8x
a. 2x(x2 + 2x + 4) b. 2x(x + 2)(x + 4) c. x(2x2 + 4x + 8) d. 2x3 + 4x2 + 8x
Simplify the product using FOIL.
____ 20. (3x – 7)(3x – 5)
a. 9x2 + 6x + 35 b. 9x2 + 36x + 35 c. 9x2 – 36x – 35 d. 9x2 – 36x + 35
____ 21. (4x + 3)(2x + 5)
2
2
2
2
a. 8x + 14x − 15 b. 8x − 14x − 15 c. 8x + 26x + 15 d. 8x − 26x + 15
Find the square.
____ 22. (4x – 6y3 ) 2
a. 16x2 – 24xy3 + 36y6 b. 16x2 – 48xy3 + 36y6 c. 16x2 + 36y6 d. 16x2 – 4xy3 + 36y6
____ 23. Simplify the sum.
(4u 3 + 4u 2 + 2) + (6u 3 – 2u + 8)
a. 10 – 2u + 4u 2 + 10 u 3 b. –2u 3 – 2u 2 + 4u – 10 c. –2u 3 + 4u 2 – 2u + 10 d. 10u 3 + 4u 2 – 2u + 10
24. Factor completely.
6x4 – 9x3 – 36x2 + 54x
25. Find the area of the shaded region. Show all your work.
3
ID: A
Algebra 1 - Chapter 9 Practice Test
Answer Section
1. ANS: C
PTS: 1
DIF: L1
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.1 Describing Polynomials
STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-1 Example 1
KEY: monomial | degree of a monomial
2. ANS: A
PTS: 1
DIF: L1
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.1 Describing Polynomials
STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a
polynomial | binomial | trinomial | classifying polynomials
3. ANS: C
PTS: 1
DIF: L2
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.2 Adding and Subtracting Polynomials
STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-1 Example 3
KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a
polynomial | binomial | trinomial
4. ANS: D
PTS: 1
DIF: L1
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.2 Adding and Subtracting Polynomials
STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-1 Example 4
KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | subtracting polynomials |
standard form of a polynomial | trinomial
5. ANS: B
PTS: 1
DIF: L1
REF: 9-2 Multiplying and Factoring
OBJ: 9-2.1 Distributing a Monomial
STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I |
IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-2 Example 1
KEY: polynomial | multiplying a monomial and a trinomial
6. ANS: C
PTS: 1
DIF: L1
REF: 9-2 Multiplying and Factoring
OBJ: 9-2.1 Distributing a Monomial
STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I |
IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-2 Example 1
KEY: polynomial | multiplying a monomial and a trinomial
7. ANS: B
PTS: 1
DIF: L1
REF: 9-2 Multiplying and Factoring
OBJ: 9-2.2 Factoring a Monomial from a Polynomial
STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I |
IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-2 Example 2
KEY: polynomial | greatest common factor in a polynomial | factoring out a monomial
1
ID: A
8. ANS: D
PTS: 1
DIF: L1
REF: 9-3 Multiplying Binomials
OBJ: 9-3.1 Multiplying Two Binomials
STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-3 Example 2
KEY: polynomial | FOIL
9. ANS: B
PTS: 1
DIF: L1
REF: 9-3 Multiplying Binomials
OBJ: 9-3.2 Multiplying a Trinomial and a Binomial
STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-3 Example 4
KEY: polynomial | multiplying a binomial and a trinomial
10. ANS: A
PTS: 1
DIF: L2
REF: 9-4 Multiplying Special Cases
OBJ: 9-4.2 Difference of Squares
STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-4 Example 4
KEY: polynomial | difference of squares
11. ANS: B
PTS: 1
DIF: L1
REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c
OBJ: 9-5.1 Factoring Trinomials
STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-5 Example 1
KEY: polynomial | factoring trinomials
12. ANS: B
PTS: 1
DIF: L1
REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c
OBJ: 9-5.1 Factoring Trinomials
STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-5 Example 3
KEY: polynomial | factoring trinomials
13. ANS: B
PTS: 1
DIF: L2
REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c
OBJ: 9-5.1 Factoring Trinomials
STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-5 Example 3
KEY: polynomial | factoring trinomials
14. ANS: B
PTS: 1
DIF: L1
REF: 9-6 Factoring Trinomials of the Type ax^2 + bx + c
OBJ: 9-6.1 Factoring ax^2 + bx + c
STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-6 Example 2
KEY: polynomial | factoring trinomials
15. ANS: B
PTS: 1
DIF: L1
REF: 9-7 Factoring Special Cases
OBJ: 9-7.1 Factoring Perfect-Square Trinomials
STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-7 Example 1
KEY: polynomial | factoring trinomials | perfect-square trinomial
16. ANS: A
PTS: 1
DIF: L1
REF: 9-7 Factoring Special Cases
OBJ: 9-7.2 Factoring the Difference of Squares
STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-7 Example 3
KEY: polynomial | factoring trinomials | difference of squares
2
ID: A
17. ANS: D
PTS: 1
DIF: L2
REF: 9-7 Factoring Special Cases
OBJ: 9-7.2 Factoring the Difference of Squares
STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-7 Example 3
KEY: polynomial | factoring trinomials | difference of squares
18. ANS: D
PTS: 1
DIF: L2
REF: 9-8 Factoring by Grouping
OBJ: 9-8.1 Factoring Polynomials With Four Terms
NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 11.0
TOP: 9-8 Example 2
KEY: polynomial | factoring a polynomial
MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
19. ANS: A
PTS: 1
DIF: L2
REF: 9-2 Multiplying and Factoring
OBJ: 9-2.2 Factoring a Monomial from a Polynomial
NAT: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I |
IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 10.0
TOP: 9-2 Example 3
KEY: polynomial | greatest common factor in a polynomial | factoring out a monomial
MSC: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I |
IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
20. ANS: D
PTS: 1
DIF: L2
REF: 9-3 Multiplying Binomials
OBJ: 9-3.1 Multiplying Two Binomials
NAT: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 10.0
TOP: 9-3 Example 2
KEY: polynomial | FOIL
MSC: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
21. ANS: C
PTS: 1
DIF: L2
REF: 9-3 Multiplying Binomials
OBJ: 9-3.1 Multiplying Two Binomials
NAT: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 10.0
TOP: 9-3 Example 2
KEY: polynomial | FOIL
MSC: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
22. ANS: B
PTS: 1
DIF: L2
REF: 9-4 Multiplying Special Cases
OBJ: 9-4.1 Finding the Square of a Binomial
NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 10.0 | CA 11.0
TOP: 9-4 Example 1
KEY: polynomial | square of a binomial
MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
3
ID: A
23. ANS: D
PTS: 1
DIF: L2
REF: 9-1 Adding and Subtracting Polynomials
OBJ: 9-1.2 Adding and Subtracting Polynomials
NAT: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 10.0
TOP: 9-1 Example 3
KEY: monomial | degree of a monomial | polynomial | adding polynomials | degree of a polynomial |
standard form of a polynomial | trinomial
MSC: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS |
S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
24. ANS:
3x(x2 – 6)(2x – 3)
PTS: 1
DIF: L2
REF: 9-8 Factoring by Grouping
OBJ: 9-8.1 Factoring Polynomials With Four Terms
NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
STA: CA 11.0
TOP: 9-8 Example 2
KEY: polynomial | factoring a polynomial
MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
25. ANS:
[4]
(2x + 2)(3x – 4) – (x – 3)(x – 6)
= (6x2 –8x + 6x – 8) – (x2 –6x – 3x + 18)
= (6x2 – 2x – 8) – (x2 – 9x + 18)
= 5x2 + 7x – 26
[3]
one minor computational error
[2]
error in formula with correct computation
[1]
correct answer without work shown
PTS: 1
DIF: L2
REF: 9-3 Multiplying Binomials
OBJ: 9-3.1 Multiplying Two Binomials
STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM |
S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53
TOP: 9-3 Example 3
KEY: rubric-based question | extended response | polynomial | Distributive Property
4