Name: ________________________ Class: ___________________ Date: __________ Algebra 1 - Chapter 9 Practice Test Find the degree of the monomial. ____ 1. 6x8 y5 a. 5 b. 6 c. 13 d. 8 ____ 2. Match the expression with its name. 6x3 – 9x + 3 a. cubic trinomial b. quadratic binomial c. fourth-degree monomial d. not a polynomial ____ 3. Write the perimeter of the figure. a. 9x + 7x b. 11x + 3x + 2 c. 14x + 2 d. 14x Simplify the difference. ____ 4. (–7x – 5x4 + 5) – (–7x4 – 5 – 9x) a. 2x4 + 2x + 8 b. –14x4 + 10x + 10 c. –14x4 – 10x + 10 d. 2x4 + 2x + 10 Simplify the product. ____ 5. 8x2 (4x2 + 4y6 ) a. 12x4 + 12x2 y6 b. 32x4 + 32x2 y6 c. 12x4 + 12x2 y6 d. 32x4 + 32xy8 ____ 6. 7a 3 (5a 6 – 2b 3 ) a. 12a 9 – 9a 3 b 6 b. 35a 9 – 14ab6 c. 35a 9 – 14a 3 b 3 d. 12a 1 8 – 9a 3 b 6 ____ 7. Find the GCF of the terms of the polynomial. 8x6 + 32x3 a. x3 b. 8x3 c. 8x3 d. 8x6 1 ID: A Name: ________________________ ____ ID: A 8. Find the missing coefficient. 2 (5d − 7)(5d − 6) = 25d + +42 a. 65 b. 5 c. –5 d. –65 ____ 9. Simplify using the horizontal method. (2n 2 + 4n + 4)(4n – 5) a. 8n 3 + 26n 2 – 36n – 20 b. 8n 3 + 6n 2 – 4n – 20 c. 8n 3 + 4n 2 – 6n – 20 d. 8n 3 – 6n 2 + 36n – 20 Find the product. ____ 10. (4p – 6)(4p + 6) a. 16p 2 – 36 b. 16p 2 – 48p – 36 c. 16p 2 + 48p + 36 d. 16p 2 + 36 Complete. ____ 11. y2 + 15y + 56 = (y + 7)(y + ) a. –8 b. 8 c. –7 d. 7 ____ 12. z2 + 9z – 90 = (z – 6)(z + ) a. –9 b. 15 c. 90 d. –15 Factor the expression. ____ 13. k2 + kf – 2f2 a. (k – 2f)(k + f) b. (k + 2f)(k – f) c. (k + 2f)(k + f) d. (k – 2f)(k – f) ____ 14. 6g 2 + 11g – 35 a. (3g + 5)(2g + 7) b. (3g – 5)(2g + 7) c. (3g + 5)(2g – 7) d. (3g – 5)(2g – 7) 2 ____ 15. d − 14d + 49 a. (d + 7) 2 b. (d − 7) 2 c. (d − 7)(d + 7) d. (d − 49)(d − 1) ____ 16. r2 – 49 a. (r – 7)(r + 7) b. (r + 7)(r + 7) c. (r – 7)(r – 7) d. (r – 7)(r + 9) ____ 17. k2 – 16h 2 a. (k + 4h)(k + 4h) b. (k – 4h 2 )(k + 4) c. h 2 (k + 4)(k – 4) d. (k + 4h)(k – 4h) ____ 18. 50k3 – 40k2 + 75k – 60 a. 5(2k2 – 3)(5k + 4) b. (10k2 – 3)(25k + 4) c. (2k2 + 15)(5k – 20) d. 5(2k2 + 3)(5k – 4) 2 Name: ________________________ ID: A Factor the polynomial. 3 2 ____ 19. 2x + 4x + 8x a. 2x(x2 + 2x + 4) b. 2x(x + 2)(x + 4) c. x(2x2 + 4x + 8) d. 2x3 + 4x2 + 8x Simplify the product using FOIL. ____ 20. (3x – 7)(3x – 5) a. 9x2 + 6x + 35 b. 9x2 + 36x + 35 c. 9x2 – 36x – 35 d. 9x2 – 36x + 35 ____ 21. (4x + 3)(2x + 5) 2 2 2 2 a. 8x + 14x − 15 b. 8x − 14x − 15 c. 8x + 26x + 15 d. 8x − 26x + 15 Find the square. ____ 22. (4x – 6y3 ) 2 a. 16x2 – 24xy3 + 36y6 b. 16x2 – 48xy3 + 36y6 c. 16x2 + 36y6 d. 16x2 – 4xy3 + 36y6 ____ 23. Simplify the sum. (4u 3 + 4u 2 + 2) + (6u 3 – 2u + 8) a. 10 – 2u + 4u 2 + 10 u 3 b. –2u 3 – 2u 2 + 4u – 10 c. –2u 3 + 4u 2 – 2u + 10 d. 10u 3 + 4u 2 – 2u + 10 24. Factor completely. 6x4 – 9x3 – 36x2 + 54x 25. Find the area of the shaded region. Show all your work. 3 ID: A Algebra 1 - Chapter 9 Practice Test Answer Section 1. ANS: C PTS: 1 DIF: L1 REF: 9-1 Adding and Subtracting Polynomials OBJ: 9-1.1 Describing Polynomials STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-1 Example 1 KEY: monomial | degree of a monomial 2. ANS: A PTS: 1 DIF: L1 REF: 9-1 Adding and Subtracting Polynomials OBJ: 9-1.1 Describing Polynomials STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | binomial | trinomial | classifying polynomials 3. ANS: C PTS: 1 DIF: L2 REF: 9-1 Adding and Subtracting Polynomials OBJ: 9-1.2 Adding and Subtracting Polynomials STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-1 Example 3 KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | standard form of a polynomial | binomial | trinomial 4. ANS: D PTS: 1 DIF: L1 REF: 9-1 Adding and Subtracting Polynomials OBJ: 9-1.2 Adding and Subtracting Polynomials STA: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-1 Example 4 KEY: monomial | degree of a monomial | polynomial | degree of a polynomial | subtracting polynomials | standard form of a polynomial | trinomial 5. ANS: B PTS: 1 DIF: L1 REF: 9-2 Multiplying and Factoring OBJ: 9-2.1 Distributing a Monomial STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-2 Example 1 KEY: polynomial | multiplying a monomial and a trinomial 6. ANS: C PTS: 1 DIF: L1 REF: 9-2 Multiplying and Factoring OBJ: 9-2.1 Distributing a Monomial STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-2 Example 1 KEY: polynomial | multiplying a monomial and a trinomial 7. ANS: B PTS: 1 DIF: L1 REF: 9-2 Multiplying and Factoring OBJ: 9-2.2 Factoring a Monomial from a Polynomial STA: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-2 Example 2 KEY: polynomial | greatest common factor in a polynomial | factoring out a monomial 1 ID: A 8. ANS: D PTS: 1 DIF: L1 REF: 9-3 Multiplying Binomials OBJ: 9-3.1 Multiplying Two Binomials STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-3 Example 2 KEY: polynomial | FOIL 9. ANS: B PTS: 1 DIF: L1 REF: 9-3 Multiplying Binomials OBJ: 9-3.2 Multiplying a Trinomial and a Binomial STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-3 Example 4 KEY: polynomial | multiplying a binomial and a trinomial 10. ANS: A PTS: 1 DIF: L2 REF: 9-4 Multiplying Special Cases OBJ: 9-4.2 Difference of Squares STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-4 Example 4 KEY: polynomial | difference of squares 11. ANS: B PTS: 1 DIF: L1 REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c OBJ: 9-5.1 Factoring Trinomials STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-5 Example 1 KEY: polynomial | factoring trinomials 12. ANS: B PTS: 1 DIF: L1 REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c OBJ: 9-5.1 Factoring Trinomials STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-5 Example 3 KEY: polynomial | factoring trinomials 13. ANS: B PTS: 1 DIF: L2 REF: 9-5 Factoring Trinomials of the Type x^2 + bx + c OBJ: 9-5.1 Factoring Trinomials STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.17 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-5 Example 3 KEY: polynomial | factoring trinomials 14. ANS: B PTS: 1 DIF: L1 REF: 9-6 Factoring Trinomials of the Type ax^2 + bx + c OBJ: 9-6.1 Factoring ax^2 + bx + c STA: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-6 Example 2 KEY: polynomial | factoring trinomials 15. ANS: B PTS: 1 DIF: L1 REF: 9-7 Factoring Special Cases OBJ: 9-7.1 Factoring Perfect-Square Trinomials STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-7 Example 1 KEY: polynomial | factoring trinomials | perfect-square trinomial 16. ANS: A PTS: 1 DIF: L1 REF: 9-7 Factoring Special Cases OBJ: 9-7.2 Factoring the Difference of Squares STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-7 Example 3 KEY: polynomial | factoring trinomials | difference of squares 2 ID: A 17. ANS: D PTS: 1 DIF: L2 REF: 9-7 Factoring Special Cases OBJ: 9-7.2 Factoring the Difference of Squares STA: CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-7 Example 3 KEY: polynomial | factoring trinomials | difference of squares 18. ANS: D PTS: 1 DIF: L2 REF: 9-8 Factoring by Grouping OBJ: 9-8.1 Factoring Polynomials With Four Terms NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 11.0 TOP: 9-8 Example 2 KEY: polynomial | factoring a polynomial MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 19. ANS: A PTS: 1 DIF: L2 REF: 9-2 Multiplying and Factoring OBJ: 9-2.2 Factoring a Monomial from a Polynomial NAT: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 10.0 TOP: 9-2 Example 3 KEY: polynomial | greatest common factor in a polynomial | factoring out a monomial MSC: NAEP N5b | NAEP A3b | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 20. ANS: D PTS: 1 DIF: L2 REF: 9-3 Multiplying Binomials OBJ: 9-3.1 Multiplying Two Binomials NAT: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 10.0 TOP: 9-3 Example 2 KEY: polynomial | FOIL MSC: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 21. ANS: C PTS: 1 DIF: L2 REF: 9-3 Multiplying Binomials OBJ: 9-3.1 Multiplying Two Binomials NAT: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 10.0 TOP: 9-3 Example 2 KEY: polynomial | FOIL MSC: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 22. ANS: B PTS: 1 DIF: L2 REF: 9-4 Multiplying Special Cases OBJ: 9-4.1 Finding the Square of a Binomial NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 10.0 | CA 11.0 TOP: 9-4 Example 1 KEY: polynomial | square of a binomial MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 3 ID: A 23. ANS: D PTS: 1 DIF: L2 REF: 9-1 Adding and Subtracting Polynomials OBJ: 9-1.2 Adding and Subtracting Polynomials NAT: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 10.0 TOP: 9-1 Example 3 KEY: monomial | degree of a monomial | polynomial | adding polynomials | degree of a polynomial | standard form of a polynomial | trinomial MSC: NAEP A3b | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 24. ANS: 3x(x2 – 6)(2x – 3) PTS: 1 DIF: L2 REF: 9-8 Factoring by Grouping OBJ: 9-8.1 Factoring Polynomials With Four Terms NAT: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 STA: CA 11.0 TOP: 9-8 Example 2 KEY: polynomial | factoring a polynomial MSC: NAEP A3c | CAT5.LV19.47 | CAT5.LV19.52 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.18 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 25. ANS: [4] (2x + 2)(3x – 4) – (x – 3)(x – 6) = (6x2 –8x + 6x – 8) – (x2 –6x – 3x + 18) = (6x2 – 2x – 8) – (x2 – 9x + 18) = 5x2 + 7x – 26 [3] one minor computational error [2] error in formula with correct computation [1] correct answer without work shown PTS: 1 DIF: L2 REF: 9-3 Multiplying Binomials OBJ: 9-3.1 Multiplying Two Binomials STA: NAEP M1h | NAEP A3c | CAT5.LV19.47 | CAT5.LV19.54 | IT.LV15.I | IT.LV15.AM | S9.TSK1.NS | S10.TSK1.NS | TV.LV19.16 | TV.LV19.49 | TV.LV19.52 | TV.LVALG.53 TOP: 9-3 Example 3 KEY: rubric-based question | extended response | polynomial | Distributive Property 4
© Copyright 2025 Paperzz