K<4h F-.rl. 24v1 ) t E> o^,n"rr M t {-[sr"rr t6 L Problem 1 Suppose that the following initial-value problem form has a powcr selies solution of the g: L"."". n:0 1a (10 points) Find the recurrence relation satisfied by FCb ,, <- Y(X)= rA )-" n-L < /., .'\-l)4'.X"--= lnr t\c x CYy\ -+ e)(rr\+\) O* a._ ray\=9 \J 1rs; !: = n-L 'L c\a ,\ qvn-\ 6v (- X )-^(n-r)4"' vL= o -_:- a,,. -5- -4 *^tt - I +vy\=\ t\= o n+t Y\^ {v.| x o oa =) =) )- C nn +r)Cv{ t z) YYI=o . Q,- -t € t-* a.-ry' w\rz \tu\= cmtrlen+z) 4"'*t I $r\ x +f m=z oo qm-r xs Qo x + + .rals t = x | oo 6 q3 x{'n YV! = { X " & rlVrt t al 'nr\ :) 2az+(6qcl a- -\) "* #--tvn+r)(vn*")\.T =) @" 6a3+qr-l =o , w\ C yr\ + + oa=t Yto'y Y(ol -{ -) vq =:=J' :o e oo )r Z 1b (5 points) Determine the first five nonzero terms of the Q.o series L o.r,' =6 t Q,--\ z A e =o I e3= N'r-o b t &v r*=L =-+=-h a., eS = - Qa = O G,)Lqt( s) t:r =\ i o. t = - "a - = ' [4){sx6) sn=S e... =- art = /,. rl^-j: /7 /z (5)(c, (4 > oo )-q,"x' I x 4-+ 6t x+?r-'.' n:.€ "+l c ..,3 xt vl 6! a +l - J"' 1c (5 points) Solve the recurrence relation you find in part a, i.e., express a", in terms of z. cc 4 a=a "r.r.^r.- =) a, = | 2 c^'r- /u.r.' ..+r- :o I-Esr^ *. r----.*-_- af = QB :- -- - ASr.i, t^ = a,o= ( / =-3l I Q1 = 91, = -- 6r ' ( (t t -tr t )ro q3u+t) ! a3 o --,---# -1, ) q? = *, , -*""-*"., !( 4 3.. r, = (j- ot 7 > =o 1- - (-r )**' (sL) ! lo I 4r, = '4r ra+t Ilc.-r> \ c=t')! \ .-'r* l-G";sn t Io n30 n =3t< .t u 6=3h1 ; s v ev-+ | n=ttttZ + f,ce o. y'uloJ f"\rt Problem 2Let f: IR. -+ lR. 2a (6 points) Show that r,rr--* be a differentiable function such that /(f) has a Laplace transform F'(s) for s > 1. - _ d+ = S'- * Sc+rd t* !?-'t .t rt f.-th*, o L9*tl----"r + .'s Jt'fe.-.\'..4 :) + is C t'' -(s^ I.ts) = -Ll^_ ) e. N-+ c,o z 1e<or,. s> l- FrS> =l l(t):"'fort>2. 2b (4 points) Show ca. i: t: that /'(f) ,6./ tl, z, a,ts ) t) t co.tirur-s.- Jt -Al- I.cs) :f L frG) ca. ;s l> 2 \-€., - atJ{) -'t e-(s-r) N e -(s-r7 n s-__==_ | -Z(S-r) Jl: o- !1 T-ocs; = g__-.'.-1rs-ro"-(s-r) -F-r U-r oo - (S^r)N . has a Laplace transform for s $,+, = "t > =) 1. Sl*, -- "t t), .z\ +' r-J 6a\ rvet5"" ,r.' fr 'Sc u"L cotn 4t-" -+A^ ; Pq{ 2a 4n ' =!ttn-{ "tt7'*'^ '*4 b\^L 'rxd ar.-"r I €,(irlo fAor^r fuot ft;'*fl*,tt n/ r ,-\ At ,G- s>r p/. e',. C'--t+ rr = -_:tt-t' J e ic*r s_ r L f1 v\l s)r , t-Lt'.*rI ea"rb 2c (5 points) Use the definition of the Laplace transform to show that the Laplace transform of /'(l) is given by sF(s) - /(0) for s > 1, i.e., L{f' (t)} : s f{/(t)} - /(0). f- [ ti,,] a"t ji+,tt = (r@r = n,) - lJr't 1,+,J.t1 )tic"f o -Sl .I t& a 1, *)t . Ac+t dt {tu}.u, - $..) + sti++'1 = J; N-t a = l " "!F.+, ;t*{ * sFrl - fr., : - -&: N-loo L- o becatt- S>l s Frsl--S"'1 a Problem 3 Let / and g be differentiable functions satisfyirrg f'(t)-2s(t):ur(t), /r'\ f(t): ()\ s'(t) + /(o) r, : g(o) :0, /a\ \ U,/ where z2(t) denotes the step function satisfying u2(t):0lor t <2 and u2(t) :1for.J > 2. Suppose that /(l) and 9(r) have respectively Laplace transforrns, F(s) and G(s), for s > 0. 3a (10 points) Take the Laplace transform of both sides of Equations (1) and (2) and result to determine F(s) and G(s). L\ti+,\= sfis>-f'o1= sQs) tGtsr - $co1 -- r 6ts/ = t l9'r*,1 t -st ,\rrn*l elt*urc+)J+ =)e Jt Lraz,+5=J t- use thc ^1/. ;^€ -Ls t {". = s)o rlt =)sF(s)-26(s) = {: s e) =7S6ts;+Fts) = * (r) vil [: . =l _ t* [ ": ."\i- -:\ I .-es e- -t E 4@ L 3r s?+ L -2_S -=# - z.s J-{ [s 'rr, L\ s\a t t s t-1 -"=J _-:-j"*-**--- L -as jl[:::, l=Li. -zs fts) -t s Gtr) = t- ,:3"Sttu 15 L *frGl _zs \_ st4 z :-----' s(sht) 3b (15 points) Use your response to Problem 3a to obtain $.+ r -\ Ll ( p = J:'1n,,] = f'{ # -* :- \ r-'l+ k #.\= :LS s'* st+ a a (-tc^ (-l-ect-<.)) trz(a) Jt =\ t,r,.., ;, = p-l f Lt J In r + s-r"!E:tJt =l -o {-:- 'ra+ c o,t =J 1 { c^[.F.0 * 1t+l t<z - C r* ( 1=I-,{+.+=\= . ! -i- 5aaz s(slrr J ?\ =-) : Lt.<{; x c^(fzt)' \==t l.=. .[..- and g(t). .dtJ*l {lS1.* *o,,\= -' L 1c- t1)"*q /(/) i:::'-t;;,,--l;' ' 'fa t.I(EJ''l 'f-z tl:$r!i1 ' {-r- =- ":-tla:a)\:= 5!j9! *-+, = f, ,...rr s'''"L{1c{-?)l + t- e'4('i1t) }d*t = L-l l6c.r] = -_ t*l r'f #. - :.3".,\ I.l*3' !'= t) : :'\g*) {-i .-'l 1 + ;E; 1-,[ -rI-,\ " t \u..+,\ s.,...,({? rts'\ -+. =) t s.\','"ISZ (!*.g11 9lt !?- l-(.ct t =.1 {z ) C-r C{:ic.c-€r) rl J ^t- = r::. (,- *L{ic{-zrf ) s;cs:"tl - >+ u.ct) '4 t <2, {i. :,," (?l_t:--l] r t- ,{ .f-rz c-^ ({-zct-ar:} r)r- Problem 4 (15 points) Find the general solution x(t)= o{ the following system of equations. l1 01 -4.l 0 l0 l1o r lx(t). l j , rt-r o -q I (t-r1-1{tr-r) & o )=O =1 \L -t r-r J t-f o =") (r-r) fcv-rr'+ cl3(c =, [ : =;., f= 1i o L"t o l'= f,: = t+ri -zi u rt.9'l o d .T ,L t-(rt2i) a lo -.1{ -ztf -- y =f, 3l-ai r^(tt zi) ?.'= =, A=zif = rilt [-i'l *" [-.'I Lrl : z= * "-*t L ) = r - acl s.',r(a{) + I I L 92 1e3 C.r' Crr lrt t + ca Siatat) = fi 1 (t-z:)t f-z"f Li -l q't1 I J "a.t lt"-tto.t L 6'.\^ 12:t'r I * \ =]T=tTL cx' (z+' I :F * -;f -z;r Jl=' [L - e Czt) (_\ I itil =lil is q co$^{'o-'* .Ic't1 =e t'i":'.tl ---. (1 ) {c+r / =o :-t>= / .;-]t;1{11 l^ l a?, _ .Ic.r : c_ (t) o o g=o d -": lL "" \= L;I o.= -\ { s-\ ;t I 6 .-_ 1 -' r-tl Sr'a(i Probtem b Let A: I o^ :0lI L-3 5a (I0 points) Find an explir.it explession for the fundamental matrix crA o[ t]re x'(t) : 4 *11;, i.e., compute the exponential of lA. system d*t--: 1. I :o -=7 rL+ 9 so :') r = t 3i r:g=3i =t L:1'1,,1[il=[:\ =, -='i**31=o t !r-Y'q '--t r\1 sat q=. -r d " "[;\ rn=f =-3i: ' rI l 1 =l ru-trA I :r s{= lS=L-:t\' *-.'\ l- =: t+ \J=L;-il "{ i!l r t rt l--\ -t I - \ \ tJ-'I\ ,,,-r *J -- -l--rtL' u - L".' jr.l ='A. $ lft = u u), r'!r^t =' +At tr4 . ., -' I trA - -L l- , t.l[ " i =) -''- = t L i -i\L " a-''J[ t -iI IIt -!{-o"tt "-3"t = ZIiuart -,;t"JL, ;l , _ J- f =.,L"'^.:j=.]t': .art+c-.ril "-t ' J . :it *rc -rg ' --rtt -1 I i;=tt "ts''t * itt' J {-c,ncat) * lti sr^tet'l I = Lifz.s.\^(3t)l e'ocatl \ z [ ;u"t- 1 oo l- clt I s..^ cat I 5.\(sl) c- cg tl I -;l 'rJI 5b( 15 points) Use your response to Problem 5a to solve the initial value problem: t;lll:illl;:, ;.= Li'.-J r1(r') z. '= --+ : 1, r2Qr): -1. -[:i-, \1, l'F \---1=-r'.{rt; rti+,.o-ttA= rnt-' [s,l. e ^'pc*1^\t*t,6ords c+r=^*c+rc*) fl + : .re d *" S .ct-s'r ! ,'r = [ !,1 ' ttl = [c.t<+] :.:*l'l t:{ 1 crr t:\tJ A ," [:J S--_-*---1,-*--'-*- . '1 c*r t C ICn 3<+-s'y sr\ 3tt-r, ][ " I Js ) L-=.r.e.t-r) cro 3c{-' IL-'l si.rfacs-t>l Js Ct Izc--[:cs-t1]t 1 -Cr [sts-tr) J c',[3ts-trt f \ :.*^f3ts-t,l 1 [t=' J r : T\ si" f:cs-{}f c-, L3(s-tt J | L+ \ t = f ,. ",t[srs-t,l - c.r, C{'(3q-=t' ll (3n-"t) 2lsin f , f-r(an-s4 1 =bL-" ^ [-zc-r (3n-3tr . s'', I 1--r - zs,.r(gt) - c^'r C3t) l (I s"^13tr JJ tl + o'^Lo\-' = 3L*z - zC-(3+) _ -_nn I I I _nrAa=\,,1 =, Z=. L-,\ (a) i -1 o=)e 4t d * I .ct-+r tt.t = tn?X::-;,' Jil:i:.'ltJ[:,1 r-6ast -s'"3ttf lr f-c-st{ss3t ia = l5rl" ct -c-, st lL-'I '\ "v : ' =L t'' st + c': € 1 J ir -':'"'!{- i: ' -' @ffiir,:. T <+r f=L r -d -) c.-ngtl + <infrt) * { L-r - zsin tt*) *,," (rt) + c., (t+) -- f z - 2- c.-, cG+) d \- -t -t.s.\(it)- L -" X.<+1 = zr c-ncet) I +{s,,rr1tt) -tc--,t3{r t* [ { Xz.ll : }lr, t{ ca+) s,; <e+ '- Qc'4 (s tr J -rl t -t Cnt?Lt - zl cn rr+rl s rn I ttrrl J
© Copyright 2024 Paperzz