New EvtGen-compatible model for rare semileptonic B-mesons decays Nikolai Nikitin (SINP, Lomonosov Moscow State University) Daria Savrina (ITEP & SINP, Lomonosov MSU) Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Outline 1. Introduction 2. Kinematics 3. New model of rare decays for EvtGen 4. Class structure 5. Some distributions 6. Future plans 7. Conclusions 2 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Introduction The goal of this talk is to present the new EvtGen decay model BTOSLLMS for rare semileptonic B-mesons decays. This model is based on a complete theoretical calculations of these processes in the SM and allows us to change easily any of the important input parameters. 3 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Kinematics B(p1 ) H ef f (b → q) + (k1 ) − (k2 ) P (p2 ) or V (p2 , ε) p1 = k1 + k2 + p2 , = q + p2 , p21 = M12 , p22 = M22 , k12 = k22 = m2 . Kinematics of three-body dacays can be described in terms of two independent variables. The first independent variable: 4 m2 ≤ (s ≡ q 2 ) ≤ (M1 − M2 )2 . In the rest frame of the leptonic pair we define the second independent variable: the angle θ between − and final P or V meson. 4 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 EvtGen model for rare semileptonic B-mesons decays We propose new EvtGen model BTOSLLMS for rare semileptonic Bmesons decays. In this model: • 14 rare semileptonic B-decays channels are included; • the form factors are calculated using the dispersion relation of the QM according to the parametrizations from D.Melikhov, B.Stech, PRD62, 014006, 2000.; • the μ-dependence of the Wilson coefficients Ci and the contribution from ρ, ω , J/ψ, ψ etc. vector resonances in SM are included; • the “weak annihilation” contribution is included; • the complex CKM-matrix elements are included. 5 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 The list of supported channels B + → K + + − ; Bd0 → K 0 + − ; Bd0 → KS + − ; B + → π + + − ; Bd0 → π 0 + − ; Bd0 → η+ − ; Bd0 → η + − ; Bs0 → η+ − ; Bs0 → η + − ; B + → K ∗+ + − ; Bd0 → (K ∗0 → K + π − ) + − ; B + → ρ+ + − ; Bd0 → (ρ0 → π + π − ) + − ; + − + − Bs0 → (φ → K K ) ; Bs0 → K̄ ∗0 → K − π + + − . Bd0 → KL + − ; 6 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 The files, containing the BTOSLLMS model The BTOSLLMS model is implemented in the following 14 files: .../EvtGenModels/EvtbTosllAmpNew.hh .../EvtGenModels/EvtbTosllScalarAmpNew.hh .../EvtGenModels/EvtbTosllVectorAmpNew.hh .../EvtGenModels/EvtbTosllWilsCoeffNLO.hh .../EvtGenModels/EvtbTosllFFNew.hh .../EvtGenModels/EvtbTosllMS.hh .../EvtGenModels/EvtbTosllMSFF.hh .../src/EvtbTosllScalarAmpNew.cpp .../src/EvtbTosllVectorAmpNew.cpp .../src/EvtbTosllWilsCoeffNLO.cpp .../src/EvtbTosllMS.cpp .../src/EvtbTosllMSFF.cpp 7 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 The list of the model input parameters in dec-files There are 8 BTOSLLMS model parameters to be specified in the dec-files: • mu is the scale parameter μ (5 GeV by default); • Nf is the number of “effective” quark flavours (5 by default); • res swch is the parameter for switching on/off resonant contribution (off ≡ 0 by default); • ias ias ias ias defines a choice of the αs (MZ ): = 0, lower limit of αs (MZ ) value; = 1 (default), then the mean value of αs (MZ ) is chosen; = 2, upper limit of αs (MZ ) value. • A, lambda, barrho and bareta, are the CKM matrix parameters corresponding to the Wolfenstein parametrisation: A, λ, ρ̄ and η̄. 8 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Class structure of the BTOSLLMZS model The model includes the following basic classes: • EvtbTosllWilsCoeffNLO class is designed to calculate the Wilson coefficients of the SM in the NLO approximation with or without concidering the contribution of the vector J/ψ- and ψ -resonances. • EvtbTosllFFNew class is intended to calculate the hadronic form factors for B̄ → P̄ or V̄ transitions . • EvtbTosllAmpNew class is requiered to calculate the amplitudes of the rare semileptonic B-decays. It includes several derivative classes: EvtbTosllScalarAmpNew to calculate the B̄ (B) → P̄ (P ) + − decays amplitudes and EvtbTosllVectorAmpNew class to calculate the B̄ (B) → V̄ (V ) + − decays amplitudes. • EvtbTosllMS classs implements explicitly the BTOSLLMS model. It is a derivative class of the EvtDecayAmp. 9 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Example of the q 2 and cos θ distributions for B̄ → P̄ 1 dN N dq 2 0.04 0.035 0.04 0.035 0.03 0.03 0.025 0.025 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 0 5 10 15 20 25 q 2 (GeV2 ) 0 −1 −0.5 0 0.5 1 cos θ The normalized q 2 and cos θ distributions for BTOSLLMS (lightblue) and BTOSLLBALL (red) models in the decay B + → K + μ+ μ− . Figure 1: 10 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Example of the q 2 -distribution for B(B̄) → V (V̄ ) 1 dN N dq 2 0.1 0.1 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 0 5 10 15 20 2 25 2 q (GeV ) 0 0 5 10 15 20 25 2 q (GeV2 ) The normalized q 2 distributions for BTOSLLMS (light-blue) and BTOSLLBALL (red) models in the decay B̄d0 → K̄ ∗0 μ+ μ− (left). And the same distribution for BTOSLLMS (light-blue) and BTOSLLALI (red) models in the decay B̄s0 → φμ+ μ− (right). Figure 2: 11 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Example of the cos θ-distribution for B̄(B) → V̄ (V ) 1 dN N d cos θ 0.04 0.035 0.035 0.03 0.03 0.025 0.025 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 −1 −0.5 0 0.5 1 cos θ 0 −1 −0.5 0 0.5 1 cos θ The normalized cos θ distributions for BTOSLLMS (light-blue) and BTOSLLBALL (red) models in the decay B̄d0 → K̄ ∗0 μ+ μ− (left) and in the decay Bd0 → K ∗0 μ+ μ− (right). Figure 3: 12 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Example of the cos θ-distribution for B̄ → V̄ In B2SLLBALL model code there are the following lines: EvtVector4C E1=T1.cont1(eps); EvtVector4C E2=T2.cont1(eps); But in B2SLLMS model code these lines are: EvtVector4C E1=M1*T1.cont2(epsV); EvtVector4C E2=M1*T2.cont2(epsV); The convolution of tensor μνp1p2 with polarization vector of the vector meson should be performed by the ν index. This index is second in this tensor, that’s why cont2() should be used, not cont1(). The tensor μνp1p2 is fully antisymmetric by indices μ and ν, that’s why the sign is changed when we convolute it by the another index. Using cont1() instead of cont2() results in swap between amplitudes of particles and antiparticles – and that leads to mirroring of cos θ distribution. 13 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Future plans a) To include in the BTOSLLMS model the Wilson coefficients in the NNLO approach. b) To prepare several form factors sets (what sets?). c) Now we have the model for Bd,s → γ + − in the test mode. d) The generator for τ → 3 decays is Under construction. e) We plane to prepare the generators for rare four-leptonic decays. f ) If it is necessary, it is possible to prepare the models for Λb → Λ μ+ μ− and for the B → P1 P2 + − decays. 14 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 Conclusion a) The description of the new BTOSLLMS model is presented. b) This model allows use to generate events for 14 different channels for a few semileptonic B-meson decays within the EvtGen package. c) The model uses the Wilson coefficients in the NLO approximation and includes the contribution of the vector resonances. The hadron transitions formfactors are taken from the dispersion quark model. d) The angular distributions in the rare B-decays are the most favorite test for the NP. First results for B(B̄) → V (V̄ )+ − decay modelled in BTOSLLMS were presented. The comparison between BTOSLLMS and BTOSLLBALL models was performed. 15 Nikolai Nikitin, Gauss meeting CERN, April 03 2009 16
© Copyright 2026 Paperzz