W13D2 Tan graph Warm Up Create π 1. Evaluate tan 2 2. Evaluate tan(π) π 3. Evaluate tan 4 π 4. Evaluate tan 2 · ( 4 Lesson 29 Graphing Tangent x tan(x) 0 0 π 4 π 2 3π 4 π 5π 4 3π 2 7π 4 2π 3 2.5 2 1.5 1 0.5 π π 3π π 5π 3π 7π 2π 9π 5π 4 2 4 4 2 4 4 2 −0.5 −1 −1.5 −2 −2.5 −3 π 3π 5π Asymptotes at , , ... 2 2 2 Period π Points on the Midline 0, π, 2π, 3π..... EX 2: Amp - none Midline = 2 Period π 3 Graph tan(3x) + 2 1 undef −1 0 1 undef 1 0 π 1 π first Asymptote = · = 2 3 6 π π All Asymptotes: + n 6 3 Midline Points 0, π, 2π, 3π..... 4 3.5 3 2.5 2 1.5 1 0.5 −0.5 π 6 π 3 π 2 2π 3 −1 Figure 1: tan(3x) EX 3: You Try y = tan x 4 −1 Midline = -1 Period 4π Asymptotes at 2π, 6π, 10π... Midline Points 0, π, 2π, 3π..... 3 2.5 2 1.5 1 0.5 −0.5 −1 −1.5 −2 −2.5 −3 π π 3π 2π 5π 3π 7π 4π 9π 5π11π6π13π7π15π 2 2 2 2 2 2 2 2 Figure 2: 4 tan(x) π y = −4 tan 2( x + 3 EX 4: Midline = 0 π 6π = 2 12 4π π h=− =− 3 12 π 1 π 3π 4π Asymptotes = · − = − 2 2 3 12 12 π First Asymptote = − 12 π 6π 5π Asymptotes = − + n= , 12 12 12 Period = 11π , 12 17π 12 3 2.5 2 1.5 1 0.5 −0.5 −1 −1.5 −2 −2.5 −3 π 6 π 3 π 2 2π 5π 3 6 π 7π 4π 3π 6 3 2 Figure 3: 4 tan(x) Lesson 30 Trig Identities 1 θ 2 y x 2 x +y =1 1 sin θ θ cos θ Substitute (cos θ)2 + (sin θ)2 = 1 This is the first Pythagorean Identity Divide all by cos2 θ cos2 θ 1 sin2 θ + = cos2 θ cos2 θ cos2 θ tan2 θ + 1 = sec2 θ Divide by sin2 θ 1 sin2 θ cos2 θ + = 2 2 sin θ sin θ sin2 θ 1 + cot2 θ = csc2 θ You might want to make a list of identities and tips for using them Pythagorean Identities (cos θ)2 + (sin θ)2 = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Reciprocal Identities EX 1: If sin θ = tan θ = sin θ cos θ csc θ = 1 sin θ sec θ = 1 cos θ cot θ = cos θ sin θ 3 π and ≤ θ ≤ π solve for the other 5 trig functions 7 2 7 3 θ cos θ 3 (cos θ)2 + ( )2 = 1 7 3 (cos θ) = 1 − ( )2 = 7 2 √ √ 2 10 40 = 7 7 In Q2 ccsine is negative √ 2 10 cos θ = − 7 3 √ sin θ 3 3 10 tan θ = = − √7 = − √ = − cos θ 20 2 10 2 10 7 7 csc θ = √ 3 7 10 sec θ = − 20 √ 2 10 cot θ = − 7 EX 2: if tan θ = 25 34 + 1 = sec2 θ = 9 9 √ 3 34 cos θ = − 34 3 cot θ = 5 5 3π and π ≤ θ ≤ solve for the other 5 trig functions 3 2 √ 34 sec θ = − 3 Use sin2 θ + cos2 θ = 1 or tan θ = sin θ cos θ sin θ 5 = 3 − √334 5 3 · −√ 3 34 5 sin θ = − √ 34 √ 5 34 sin θ = − 34 sin θ = EX 3: find sinθ if tanθ = 8 3 cot θ = 3 8 1 + cot2 θ = csc2 θ 9 73 1+ = 64 √64 73 csc θ = 8 √ 8 73 sin θ = 73 When you simplify problems with identities always TRY to get it down to just one trig function. EX 4: Simplify cos θ · tan θ = sin θ EX 5: Simplify csc θ · cot θ = cos θ cos θ = 2 1 − cos2 θ sin θ sec x + tan x rewrite everything in terms of sine and cosine sec x − tan x sin x 1 sin x 1 + ÷ − cos x cos x cos x cos x EX 6: Simplify Write as one fraction (Get a common denominator if necessary) 1 + sin x 1 − sin x ÷ cos x cos x 1 + sin x cos x · cos x 1 − sin x 1 + sin x 1 − sin x EX 6: Verify. Like a proof so the answer is not as important as the process. Only manipulate one side of the equation at a time try to get the sides to look the same Only do one step per line sin x 1 − cos x + = 2 csc x 1 − cos x sin x get a common denominator (1 − cos x)(1 − cos x) sin x(sin x) + = 2 csc x (1 − cos x)(sin x) (1 − cos x)(sin x) sin2 x + (1 − 2 cos x + cos2 x = 2 csc x 1 − cos x)(sin x) (sin2 x + cos2 x + 1 + 2 cos x = 2 csc x 1 − cos x)(sin x) 2 + 2 cos x = 2 csc x 1 − cos x)(sin x) 2(1 + cos x) = 2 csc x 1 − cos x)(sin x) 2 = 2 csc x (sin x) 2 csc x = 2 csc x
© Copyright 2026 Paperzz