Section 1-8 Radical Rules PRODUCT RULE: QUOTIENT RULE: √ ∙ √ = √ = Example: Example: √10 ∙ √ = √10 √ √ = = √5 More directly, when determining a product or quotient of radicals and the indices (the small number in front of the radical) are the same then you can rewrite 2 radicals as 1 or 1 radical as 2. Simplify by rewriting the following using only one radical sign (i.e. rewriting 2 radicals as 1). 1. √3 ∙ √12 3. √7 ∙ 2 2. 4. √ √ √ √ Simplify by rewriting the following using multiple radical sign (i.e. rewriting 1 radical as 2). 5. 6. M. Winking (Section 1-8) p. 17 Express each radical in simplified form. 7. √48 8. 450 9. P 10. √300 N 11. 675 48 O 12. − 81 O 13. 72 N 81 14. A 15. √−27 N I K Use the letters and answers to match the answer to the riddle. Only some answers will be used. “What is an opinion without π?” _________ −9 √ _________ 15 2 _________ 10 √3 _________ _________ _________ 2 3 6 √6 √3 √2 _________ 15 M. Winking (Section 1-8) 3 p. 18 Express each radical in simplified form. 16.√6 ∙ √12 17.√18 ∙ √6 Simplify. Assume that all variable represent positive real numbers. 18. 5√3 + √2 − 2√3 + 4√2 21. √18 − 3 12 19. +2 8 24. 2 10 3 6 2 5 24 √32 22. 108 5 12 4 44 25. 2x 23. 5 18 x 4 3x 8 x 2 x 2 2 + 2 √18 6x 3 x 20. 2 150 18 3 8 24 26. 3 6a 4a 2 15a 2 p. 101 M. Winking (Section 1-8) p. 19 Simplify. Assume that all variable represent positive real numbers and rationalize all denominators. 18. 21. √ 19. 20. √ 22. 12 8 3 2 27 2 √ √ 23. √ √ √ √ M. Winking (Section 1-8) p. 20
© Copyright 2025 Paperzz