7 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 Whileworkingon“IsItRight?”inthepreviousmoduleyoulookedatseveralexamplesthatleadto theconclusionthattheslopesofperpendicularlinesarenegativereciprocals.Yourworkhereisto formalizethisworkintoaproof.Let’sstartbythinkingabouttwoperpendicularlinesthatintersect attheorigin,likethese: 1. Startbydrawingarighttrianglewiththesegment!" asthehypotenuse.Theseareoften calledslopetriangles.Basedontheslopetrianglethatyouhavedrawn,whatistheslopeof !"? 2. Now,rotatetheslopetriangle90°abouttheorigin.Whatarethecoordinatesoftheimage ofpointA? Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org https://flic.kr/p/kFus4X A Solidify Understanding Task CCBY 8.2 Slippery Slopes 8 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 3. Usingthisnewpoint,A’,drawaslopetrianglewithhypotenuse!"′ .Basedontheslope triangle,whatistheslopeoftheline!"′? 4. Whatistherelationshipbetweenthesetwoslopes?Howdoyouknow? 5. Istherelationshipchangedifthetwolinesaretranslatedsothattheintersectionisat (-5,7)? Howdoyouknow? Toproveatheorem,weneedtodemonstratethatthepropertyholdsforanypairofperpendicular lines,notjustafewspecificexamples.Itisoftendonebydrawingaverysimilarpicturetothe exampleswehavetried,butusingvariablesinsteadofnumbers.Usingvariablesrepresentsthe ideathatitdoesn’tmatterwhichnumbersweuse,therelationshipstaysthesame.Let’strythat strategywiththetheoremaboutperpendicularlineshavingslopesthatarenegativerecipricals. Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 9 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 • Lineslandmareconstructedtobeperpendicular. • StartbylabelingapointPonthelinel. • LabelthecoordinatesofP. • DrawtheslopetrianglefrompointP. • Labelthelengthsofthesidesoftheslopetriangleusingvariableslikeaandbforthe runandtherise. 6. Whatistheslopeoflinel? RotatepointP90°abouttheorigin,labelitP’andmarkitonlinem.Whatarethe coordinatesofP’? 7. DrawtheslopetrianglefrompointP’.Whatarethelengthsofthesidesoftheslope triangle?Howdoyouknow? 8. Whatistheslopeoflinem? 9. Whatistherelationshipbetweentheslopesoflinelandlinem?Howdoyouknow? 10. Istherelationshipbetweentheslopeschangediftheintersectionbetweenlinelandlinem istranslatedtoanotherlocation?Howdoyouknow? 11. Istherelationshipbetweentheslopeschangediflineslandmarerotated? Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 10 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 12. Howdothesestepsdemonstratethattheslopesofperpendicularlinesarenegative reciprocalsforanypairofperpendicularlines? Thinknowaboutparallellinesliketheonesbelow. m l 13.DrawtheslopetrianglefrompointAtotheorigin.Whatistheslopeof!"? 14.Whattransformation(s)mapstheslopetrianglewithhypotenuse!"ontotheotherlinem? 15.Whatmustbetrueabouttheslopeoflinel?Why? Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 11 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 Nowyou’regoingtotrytousethisexampletodevelopaproof,likeyoudidwiththeperpendicular lines.Herearetwolinesthathavebeenconstructedtobeparallel. 16.Showhowyouknowthatthesetwoparallellineshavethesameslopeandexplainwhythis provesthatallparallellineshavethesameslope. Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 8.2 Slippery Slopes – Teacher Notes A Solidify Understanding Task Purpose:Thepurposeofthistaskistoprovethatparallellineshaveequalslopesandthatthe slopesofperpendicularlinesarenegativereciprocals.Studentshaveusedthesetheorems previously.Theproofsusetheideasofslopetriangles,rotations,andtranslations.Bothproofsare precededbyaspecificcasethatdemonstratestheideabeforestudentsareaskedtofollowthelogic usingvariablesandthinkingmoregenerally. CoreStandardsFocus: G.GPEUsecoordinatestoprovesimplegeometrictheoremsalgebraically. G.GPE.5Provetheslopecriteriaforparallelandperpendicularlinesandusethemtosolve geometricproblems(e.g.,findtheequationofalineparallelorperpendiculartoagivenlinethat passesthroughagivenpoint). RelatedStandards:G.CO.4,G.CO.5 StandardsforMathematicalPracticeofFocusintheTask: SMP3–Constructviableargumentsandcritiquethereasoningofothers. SMP6-Attendtoprecision. TheTeachingCycle: Launch(WholeClass): Ifstudentshaven’tbeenusingtheterm“slopetriangle”,startthediscussionwithabrief demonstrationofslopetrianglesandhowtheyshowtheslopeoftheline.Studentsshouldbe familiarwithperforminga90degreerotationfromthepreviousmodule,sobeginthetaskby havingstudentsworkindividuallyonquestions1,2,3,and4.Whenmoststudentshavedrawna conclusionfor#4,haveadiscussionofhowtheyknowthetwolinesareperpendicular.Sincethe purposeistodemonstratethatperpendicularlineshaveslopesthatarenegativereciprocals, Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 emphasizethatthereasonthatweknowthatthelinesareperpendicularisthattheywere constructedbasedupona90degreerotation. Explore(SmallGroup): Theproofthattheslopesofperpendicularlinesarenegativereciprocalsfollowsthesamepattern astheexamplegiveninthepreviousproblem.Monitorstudentsastheywork,allowingthemto selectapoint,labelthecoordinatesandthenthesidesoftheslopetriangles.Referstudentsbackto thepreviousproblem,askingthemtogeneralizethestepssymbolicallyiftheyarestuck.When studentsarefinishedwithquestions6-12,discusstheproofasawholegroupandthenhave studentscompletethetask. Discuss(WholeClass): Thesetupfortheproofisbelow: y (a, b) l m (-b,a) b a a -b ! ! ! !! Theslopeoflinelis andtheslopeoflinemis ! or- .Theproductofthetwoslopesis-1, ! thereforetheyarenegativereciprocals.Ifthelinesaretranslatedsothattheintersectionisnotat theorigin,theslopetriangleswillremainthesame.Discusswiththeclasshowquestions6-12help ustoconsiderallthepossiblecases,whichisnecessaryinaproof.Afterstudentshavefinishedthe task,gothroughthebriefproofthattheslopesofparallellinesareequal. AlignedReady,Set,Go:ConnectingAlgebraandGeometry8.2 Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 12 SECONDARY MATH I // MODULE 8 8.2 CONNECTING ALGEBRA & GEOMETRY – 8.2 READY, SET, GO! Name PeriodDate READY Topic:Usingtranslationstographlines Theequationofthelineinthegraphis! = !. 1.a)Onthesamegridgraphaparallellinethatis3unitsaboveit. b)Writetheequationforthenewlineinslope-interceptform. c)Writethey-interceptofthenewlineasanorderedpair. d)Writethex-interceptofthenewlineasanorderedpair. e)Writetheequationofthenewlineinpoint-slopeformusingthey-intercept. f)Writetheequationofthenewlineinpoint-slopeformusingthex-intercept. g)Explaininwhatwaytheequationsarethesameandinwhatwaytheyaredifferent. Thegraphattherightshowstheline! = −!". 2.a)Onthesamegrid,graphaparallellinethatis4unitsbelowit. b)Writetheequationofthenewlineinslope-interceptform. c)Writethey-interceptofthenewlineasanorderedpair. d)Writethex-interceptofthenewlineasanorderedpair. e)Writetheequationofthenewlineinpoint-slopeformusing they-intercept. f)Writetheequationofthenewlineinpoint-slopeformusingthex-intercept. g)Explaininwhatwaytheequationsarethesameandinwhatwaytheyaredifferent. Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 13 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 8.2 ! Thegraphattherightshowstheline! = !. ! 3.a)Onthesamegrid,graphaparallellinethatis2unitsbelowit. b)Writetheequationofthenewlineinslope-interceptform. c)Writethey-interceptofthenewlineasanorderedpair. d)Writethex-interceptofthenewlineasanorderedpair. e)Writetheequationofthenewlineinpoint-slopeformusingthey-intercept. f)Writetheequationofthenewlineinpoint-slopeformusingthex-intercept. g)Explaininwhatwaytheequationsarethesameandinwhatwaytheyaredifferent. SET Topic:Verifyingandprovinggeometricrelationships Thequadrilateralattherightiscalledakite. Completethemathematicalstatementsaboutthekiteusing thegivensymbols.Proveeachstatementalgebraically. (Asymbolmaybeusedmorethanonce.) ≅ ⊥ ∥ < > = 4.!"__________!" 5.!"__________!" 6.!"__________!" Proof ______________________________________________________________________________ Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org 14 SECONDARY MATH I // MODULE 8 CONNECTING ALGEBRA & GEOMETRY – 8.2 7.∆!"#______ ∆!"# 8.!!__________!" 9.!"__________!" 10.!"__________!" 8.2 GO Topic:Writingequationsoflines Usethegiveninformationtowritetheequationofthelineinstandardform. !" + !" = ! ! 12.! !!, −! , ! !, ! 11.!"#$%: − !"#$% !", ! ! 13.! − !"#$%&$'#: − !; ! − !"#$%&$'#: − ! 14.!"" ! !"#$%& !"# −! . ! !" !"# !"#$%&. ! 16.! −!", !" , ! !", !" 15.!"#$%: ; ! − !"#$%&$'#: ! ! Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org
© Copyright 2026 Paperzz