GEOPHYSICALRESEARCHLETTERS,VOL. 20, NO. 2, PAGES101-104,JANUARY22, 1993 CATASTROPHIC OVERTURN OF THE EARTH'S MANTLE DRIVEN BY MULTIPLE PHASE CHANGES AND INTERNAL HEAT GENERATION Stuart A. Weinstein Department of Geological Sciences, TheUniversity of Michigan •. Theeffectsof phasechanges andstrong internal governingequationsfor heat and momentumconservation heatgeneration may combineto bring aboutbrief, but extremely intenseepisodes of rapidthermalconvection in the are •T Earth'smantle. Numerical calculations using realistic thermodynamic propertiesfor the exothermicOlivine --+ Spinel and endothermic Spinel ---> Perovskite + Magnesiowustite phasetransitionssuggestthe transition regionof the Earth'smantlemay act as a capacitorfor subducting slabs.Slabmaterialaccumulates in the transition region untila threshold levelof thermalbuoyancy isreached, andis thenrapidly dischargedinto the lower mantle.In my calculations, this occursas a catastrophic burstof convection lasting~10 Myr, with elevatedheat transferrateslasting ~100 Myr. Such episodesmay be analogsto superplume activitywhich has been hypothesizedto give rise to an intenseepisodeof intra-platevolcanismand stabilizethe geodynamo againstreversals.The topographyon the two phase change boundaries is foundto be negatively correlated, withthecorrelationbecomingmore negativeduringperiods of rapidconvection.Furthermore,the resultsof this study suggest the transitionregionof the Earth'smantlecouldbe ~250K cooler on average,and consequentlymore viscous, thanthesurrounding mantle. Introduction The effects of multiple phase transitionson thermal convection in the mantleis an importantdynamicalproblem thathasbeenreceivingmuchattention[Liu et al., 1991,Zhao •t +J(T,T) =V2T+ R (1) dF1+•Rp2 _,•'. dF2) 3T (2) V2ooy =Ra(l+ • TI* '• T2 •xx v2q,= o5, (3) ED2 gApl.2D 3 Ra= PøgtxATD3 R= •KAT Rpl,2= •cg • (4) whereT is the temperature, ß is the streamfunction, R is the dimensionless heatsource, COy is thevorticity,ri is the reducedpressure,Ra is the Rayleighnumberbasedon the imposed temperature difference AT, Rpl,2 are the phase changeRayleighnumbers, F 1 andF2 arethephasefunctions determining thefraction of denser phase andTl* and)t2*are the dimensionless Clapeyronslopes.The other symbolsD, g, ct, •c, g, Po, APa,2,K, and •; are the layer thickness, acceleration of gravity, thermal expansion coefficient, thermaldiffusivity, dynamicviscosity,density at the top of the layer, phase transition density changes, thermal conductivity and internal heat generation rate per unit volume. The subscripts 1,2 denote the exothermic and endothermic transitions, respectively. The phasefunctionsare calculated using the method of Richter [1973] with a transition half-width constant of 43 km. All of the fluid boundaries are assumed to be stress-free et al., 1992, Honda et al., 1992, Pelfier and Solhelm, 1992, andimpermeable.In addition,thetop andbottomboundaries are isothermaland the sidewallsare insulating.The boundary Steinbach andYuen, 1992].Thesestudiesshowhowmultiple conditions are: transitions filter ascending plumes,[Zhaoeta!., 1992],affect secondaryinstabilities arising from an internal thermal boundarylayer [Liu et al., 1991], control the thermal spectrum of the transitionzone [Peltier and Solheim, 1992, • = coy=T=0 [z= 1] (5) ß = O)y= O, T=i [z = 0] (6) [x = 0,•1 (7) OT Zhaoet al., 1992] andinfluencethe largescalestructureof =• = 0 T'= COy 8x convection[Pelfier and Solheim, 1992, Steinbachand Yuen, 1992,Zhaoet al., 1992].Thisstudyfocuses onthecombined Equations(1)-(3) are solvedwith respectto the boundary effectsof phasechangesand internalheat generation; conditions(5)-(7) usingthemethodof finite differenceson a togethertheseeffectsproduceshortperiodsof vigorous uniformmesh.Thereare225 grid pointsin the verticalgiving 12.8 km resolution when scaled to the thickness of the convection whichcouldhaveplayeda fundamental role in Earthhistory. mantle. The equilibrium positions (when there is a Model conductive temperature profile) of the exothermic and endothermicphase transitionscorrespondto dimensional Our model consistsof a 2-D, isoviscous,Newtonian, depthsof 280 km and 460 km respectively.The initial incompressible fluidlayerheatedfrombelowandinternally, temperature distribution consists of upper and lower with two isochemicalphasechangesrepresenting the boundarylayersandhas a meandimensionless temperature exothermic Olivine --> Spinelandendothermic Spinel--+ of 0.5. In order to avoid a long transient period, R is set Perovskite + (Mg,Fe)Ophase transitions. Thedimensionlessinitially to 30 and then lowered to 20 after the average dimensionless temperaturereached0.6. Table Copyright 1993 bytheAmerican Geophysical Union. 1 contains both the values used for the dimensionless parametersin equations(!)-(3) and the values of the constantsthat were used in calculating them. The values for the C!apeyron slopes and transition density changesusedhere are givenby [Ito andTakahashi,1989, Ito Papernumber93GL00044 0094-8534/93/93 GL-00044503.00 101 Wainstein: Catastrophic Overturn InTheEarth's Mantle 102 Table 1' Parameter descends thehot,lowerpartof thefluid layermovesupwards Values through theendothermic transition. Thisresults in a rapidrise Parameters Values in thebasalandsurfaceaveragedNusseltnumbersby a factor of-5 (Figure2b), andreducesthe transitionzonethickness Ra 1.0 x 107 (Figure3). Afterthecoldfluid hasdescended through the Rp1 Rp2 1.67x 107 2.0x 107 lowerlayerandspreadacrossthe baseof the box (Figures 4d-4f), the pattern of convection again becomes R 20 •tl* Y2* .106 -.09 O: 2.0 x 10-5K -1 AT 2750 K Po 'Y1 T2 3300kgm-3 3.6MPaK-1 -3.0MPaK-1 Apl/p o Ap2/Po .09 .]1 !l 4.2x 102! Pas œ K 1.9x10 -8W m-3 1.0 x 10-6 m'3 s-1 g 9.8ms'2 D 2.88 x 106 m predominantlylayered. The horizontally averaged temperature profiles(< T >) nowreflectthe abundance of coldfluid on the bottomof the fluid layer and hot fluid above the endothermic transition (Figures 4e,4f). This thermal distributionexcites the formation of instabilities in the lower andupperthermalboundary layers(Figure40 maintainin highheattransfer rates.Theelevated heattransfer ratesdecay 10. I ...... i , , , i , , , u.i et al., 1990,Ringwood,1991,Anderson,1987]. The other constants aregivenvaluesappropriate for themantle. 10 '5 , , Results and Discussion , ........ DIMENSIONLESS TIME x 100 Fig. 1. Log of volume kinetic energytime series.The kinetic The kineticenergy,volume,basalandsurface averaged energyis normalized by Ra2. A dimensionless timeinterva Nusseltnumber,and averagetransitiondepthtime series of .001 corresponds to-260 Myr. obtainedfrom a long integrationof equations(1)-(3) are shownin Figures1-3. Thesetime seriesstartapproximately ß ' ' i ' ß i ß ß ' i ' ' ' i , ' ' I 03 ,--2.5overturnsafter R was lowered to 20. The kinetic energy and Nusseltnumbertime seriesare dominatedby a few large peakswhichoccurduringbriefepisodes of extremeheatand LLI mass transfer when the fluid above the endothermic transition tTI •;1 plummets throughthe transition destroying a predominantly layeredconvection pattern.The kineticenergyof thefluid layer variesby nearly four ordersof magnitudeand the volume averagedNusseltnumbervariesby more thantwo ordersof magnitude.The peakvaluesof thevolumeaveraged 02 z LU 01 (/)1 z Nusselt number exceed 500 with a maximum of 1230 and are an orderof magnitudegreaterthan theircounterparts in the basal and surface averagedNusselt number.During these brief episodes,a tremendousamountof potentialenergyis releasedin a shortburstwhichthenslowlydissipates through the boundarylayers.This accountsfor thediscrepancy in size betweenthe peak volume averagedand surfaceand basal averagedNusseltnumbers[GrossmanandLohse,1991]. The episode whichoccursat t=0,009will beexamined in detail and is shown in a sequenceof temperatureand streamfunctionfields (Figure 4). During the first two time instants(Figures4a, 4b) coldfluid accumulates from drifting instabilitiesoff the top boundary-layeron the left sideof the layer abovethe endothermic transition.Eventuallyenough buoyancyexists to overcomethe stabilizingeffect of the endothermic transition. When this occurs, a substantial fraction of the cold fluid above the endothermic transition I 0ø 0.7 0.88 1.06 1.24 DIMENSIONLESS 1.42 TIME 1.6 x 100 90 , ,,',. , --Surface ,v,,.u I_1 80 ,,m, 7o ---Basal ,v,.,u I/ • 5o n4o •3o z I"" ,"' .;",:,/', 10 0.7 0.88 1.06 DIMENSIoNLESS 1.24 TIME 1.42 x 1.6 100 catastrophically descends to thebottomof thelayerat speeds exceeding50 cm/yr (Figure4c). The descentthroughthe Fig. 2. (a) Log of volumeaveragedNusseltnumbertime lower layer requires about ,-,10 Myr. As the cold fluid number time series. series. (b)Linearplotof basalandsurface averaged Nusse Weinstein:CatastrophicOverturnIn The Earth'sMantle 350F 400l- •¾-m - •'450 - '-'500F F'-"-Exøthern•i• 'Transiiion !-. u.I550•6001-I'""Endøthermic . •. Transition - ß]a /t .... ,V'-.-". 65O F"-"' '"J ......... 7001 0.7 0.925 1.15 DIMENSIONLESS :' - 1.375 1.6 TIME x 100 Fig.3.Timeseries of average phase transition depths. The phase transition depth isthedepth atwhich F1,2=.5. 103 by Hondaet al., [1992, 1993] and the 3-D spherical calculations of Tackleyet al., [1992].While theeffectsof compressibility (e.g.,viscousdissipation, latentheat)may effecttheseepisodes, it is clearlynotresponsible for them. Thegreaterintensity of thecatastrophic eventsfoundin this studymaybe dueto theeffectsof smallaspect-ratio, the presence of the exothermic phasetransitionor dueto the effectsof greaterinternalheatgeneration. For thetimeintervalusedin Figures1-3, the transition zone width thickness varies between 138 km and 255 km, withanaverage of 177km.Themeandepthsare449.5km and 626.5 km for the exothermic and endothermic transitions. Present estimates of depths of 410km and660 km for these transitions in theEarth are bracketedby valuesobtainedin thecourseof the calculation. Duringthe episodesof rapid convection,the transitionzonethicknessdecreases rapidly, bynearly100km,andslowlyincreases thereafter. Revenaugh andJordan[1991] foundnegativelinear correlationcoefficients between travel times through the tobackground levelsover-100Myr.Based onthesurface transitionzoneand lower mantle (r=-0.65), betweentravel andbasal Nusselt number timeseries duringthetimeinterval timesthrough thetransition zoneanduppermantle(r=-0.78) displayed inFigures 1-3,radiogenic heating contributes 40%- anda positivecorrelation between traveltimesthrough the 60%of thesurfaceheatflow. uppermantleandtraveltimesthroughthe lowermantle Intermittent layeredconvection, in whicha layered (r=0.35).Thesecorrelations areprimarilydueto topography convection patternis disruptedby occasionalstrong on the 410 km and 670 km discontinuitiesand are consistent downwellings wasfirstdescribed by Machetel andWeber with the behaviorexpectedfor phasetransitionswith [1991]. Theepisodes foundin thisstudy arequalitatively Clapeyron slopesof differentsign. Figure5 showsthe similar to,butclearlymoreintense, thanthosefoundin the variation of the linear correlation coefficient of the spherical axisymmetric calculations ofMachetel andWeber topography onthetwophasetransitions andkineticenergy [1991], andthose found recently inthe3-DCartesian studies over a time interval centeredon a catastrophicepisode CATASTROPHIC t=0.00883 MANTLE OVERTt•RN t=0.00928 t=0.00932 occurring at 0.0141dimensionless time. The correlation coefficients are alwaysnegativeandrangein valuefrom -0.40 to -0.88. When the kinetic energy is large, the correlation coefficientis morenegative.This relationship exists duringperiods of rapidconvection, because thereis a largefluidfluxthrough bothphase transitions. At othertimes whenthereisa significant amount of layering, thecorrelation is muchweaker.Perhaps a globaldetermination of r for the <T> 410 km and 670 km discontinuities can be used as a barometer forplumeactivityin themantle. , Recently, LarsonandOlson[1991]hypothesized that superplume activityduringtheCretaceous stabilized the ., t=0.00966 t=0.00936 t=0.00988 10 -2 <T> z -0.7 0 10-3I'd 10 -4 Fig.4. Sequence of temperature andstreamfunction fields 0 -o.5 spanning the time interval0.00883- 0.00988.In the I P temperature fields,blueandredrepresent coldandhotfluid -0.4 .... •..... ,.I,,,, .... , .... 10 '5 respectively. In thestreamfields, blueandredindicate fluid 1.3 1.35 1.4 1.45 1.5 1.55 moving counter-clockwise respectively. Thehistogram to the DIMENSIONLESS TIME X 100 fightof thetemperature fieldsrepresents thehorizontally thevariation of thelinearcorrelation averaged temperature distribution. Theblackandwhitelines Fig.5. Plotshowing are the .2 and .8 contours of the F] respectively. andF2 functions coefficient (R)and kinetic energy inatime window centered on theeventat .0141 dimensionless time. Weinstein: Catastrophic Overturn InTheEarth's Mantle 104 References Anderson,D.L., Thermally inducedphasechanges,lateral heterogeneity of themantle, continental rootsanddeep E 720 ........... : slabanomalies, J. Geophys.Res.,92, 13968-13980,1987 Grossman S., and Lohse D., Fourier-Weierstrass Mode "'r' 1440 ...................... : -' C::l 2160 .................. i 2880 . , -, 1.018 1.041 ........... 1.064 DIMENSIONLESS .... 1.087 1.110 TIME 1.133 x 100 Fig. 6. Sequenceof horizontallyaveragedtemperature profilesspanning the timeinterval.01018- .01330.The horizontal bar indicates a variation in T of 1.0. Analysis for ThermallyDrivenTurbulence, Ph.•s5_•. •, 67,445-448, 1991 HondaS., Balachandar S., Yuen D. A. and ReutelerI)., Dynamicsof Three-Dimensionalmantle Convection with an Endothermic PhaseTransition,Geophys,Re•s • in press,1992 HondaS., Balachandar S., Yuen D. A. and ReutelerI)., Three-Dimensional Onstabilities of Mantle Convection withMultiplePhaseTransitions,Scie_•.•,in press,1993 Ito E. and Takahashi E., Postspinel transformationin the system Mg2SiO4-Fe2SiO4 and some geophysical implications,J. G½ophys. Res.,94, 10637-10646,1989 Ito E., Akaogi M., Topor L., and Navrotsky,A., Negative geodynamo againstreversals andwasresponsible for the pressure-temperature slopes for reactionsforming Cretaceous superchron. Their modelis comprised of the MgSiO3 perovskite from calorimetry, Science,249, plumemodelof Richards et al., [1989]anddynamo theory. 1275-1278, 1990 The basicpremiseis that a plumeheaddetaching from a Larson' R. L. andOlsonP., Mantle plumescontrolmagnetic thermalboundary layerat thecore-mantle boundary (CMB) reversalfrequency,Earth Planet. Sci, Lett., 107, 437. will greatlyincrease theheatflow at theCMB andstabilize 447, 1991 thegeodynamo against reversals. After10-20Myr theplume Liu M., Yuen D. A. andHondaS., Developmentof Diapiric headwill reachthe surfacegivingrise to floodbasalts.A Structures in the Upper mantleDue to PhaseTransitions, prediction of thismodelis thatthesuperchron beginsbefore Science,252, 1836-1839, 1991 flood basaltproductioncommences.The catastrophic Machete!P., andWeber P., Intemaittentlayeredconvection in episodes observed in thecalculation presented heremayalso a modelwith an endothermicphasechangeat 670 krn, giveriseto superchrons. In thismodel,heatflowat theCMB Nature, 350, 55-57, 1991 increasesdue to the cold material which falls on it. Perhaps Peltier W. R. and Solheim L. P., Mantle Phase Transitions evenmoreimportant is thedifference in timingbetween the and Layered Chaotic Convection,Geophys.Res. Lea.., 19, 321-324, 1992 generation of floodbasaltsandtheonsetof thesuperchron. Richards M.A., Duncan R.A., and Courtillot V.E., Flood Figures4b-4cclearlyshowtheinjectionof hotfluidintothe upperlayer before the cold materialreachesthe bottom. basalts and hotspot tracks' Plume heads and tails, Therefore,in thismodelfloodbasaltgeneration beginsbefore the onset of the superchron.! suggestthat perhapsa superchron indicatesa periodwhereportionsof the upper mantle becamegravitationallyunstableand precipitateda transitionfrom two-layer convectionto vigorouswhole mantle convection. The generalthermal structurecan be understoodfrom an examination of thehorizontallyaveragedtemperature profiles obtainedduringa periodof low activity.The profilesshown in Figure 6 spana periodof time lastingabout1 overturn. Theprofilesshowa low temperature zonebetween thephase transitions.This featureis alsopresentin the calculations of Zhao et al., [1992]. The cold zone develops as cold, descendingflow is nearly preventedfrom penetratingthe endothermictransitionand spreadout over the endothermic transitionboundary.The temperaturecontrastbetweenthe coldzoneandsurrounding regionsis ~250 K. Thecoldzone still exists,to a lesserdegree,even duringepisodesof rapid convection(Figure4 ). Science,246, 103-107, 1989 RichterF. M., Finite amplitudeconvectionthrougha phase boundary,Geophys.J. R. Astron. $0C,, 35, 265-276, 1973 RingwoodA. E., Phasetransformations and their bearingon the constitutionand dynamicsof the mantle, Geochim, Cosmochim.Acta, 55, 2083-2110, 1991 Revenaugh J. andJordanT. H., MantleLayeringFrom Reverberations2. The Transition Zone, J. Geophys, Res., 96, 19763-19780 SteinbachV. and Yuen D. A., The Effectsof Multiple Phase Transitions on Venusian Mantle Convection, I• Geoohvs. Res. Lett., 1992 _ _ TackleyP.J.,Stevenson D.J., GlatzmeirG.A., andSchubert G., Effectsof an endothermic phasetransition at 670km depthon sphericalmantleconvection, Nature,in press, 1992 Zhao W., Yuen D. A. and Honda S., Multiple phase transitionsand the style of mantleconvection,P• Earth and Planet. I.nt., 72, 185-210, 1992 Acknow.ledgment. I thank Mike Gumis for his help and comments and the Pittsburg Supercomputer Center. Computationalfacilities at Michigan are partly fundedby NSF EAR-8937164. S. Weinsteinis supportedby a 1991 NSF EarthSciences Postdoctoral Research Fellowship,grant NSF EAR-9102808. S. A. Weinstein,Departmentof GeologicalSciences, TheUniversityof Michigan,Ann Arbor,M148109-1063. Received:November 24, 1992 Accepted: December 15,1992
© Copyright 2026 Paperzz