Nate Olson ECET 307 Homework 5 Professor Lin October 22, 2006 Grade 99/100, Excellent! In problems 1-6, determine the Laplace transforms of the functions given using Table 5-1 on page 170 and Table 5-2 on page 173. 1) v(t) = 8 (Problem 5-1) 1 8 Lv(t) =8( ) = √, 5/5 s s 2) i(t) = 4 ε −2t (Problem 5-2) 1 4 )= √, 5/5 Li(t) = 4( s+2 s+2 3) e(t) = 5t (Problem 5-3) 1 5 Le(t) = 5( 2 ) = 2 √, 5/5 s s 4) i(t) = 4 ε − t sin(3t − 30 o ) (Problem 5-12) sin(A-B) = sinAcosB-cosAsinB Li(t) = 4 ε − t (sin 3t cos 30 o − cos 3t sin 30 o ) Li(t) = 4 ε −t (.866 sin 3t − .5 cos 3t ) Li(t) = 3.464 ε −t sin 3t − 2ε − t cos 3t 3 s +1 Li(t) = 3.464 −2 2 ( s + 1) 2 + 9 ( s + 1) + 9 10.392 2s + 2 Li(t) = 2 − 2 s + 2s + 10 s + 2s + 10 8.392 − 2s Li(t) = 2 √, 5/5 s + 2s + 10 5) Write an equation for the figure below and take the Laplace transform of it. (Problem 5-17) v(t) 10 V Time (sec) 2 4 6 f(t-a)u(t-a) = ε − as F (s) 1 F(s) = 2 s 10 =5 Slope = 2 f(t) = 5tu(t) – 5(t-2)u(t-2) – 5(t-4)u(t-4) + 5(t-6)u(t-6) 5 5ε −2 s 5ε −4 s 5ε −6 s Lf(t) = 2 − 2 − 2 + 2 s s s s 5(1 − ε −2 s − ε −4 s + ε −6 s ) Lf(t) = √, 10/10 s2 6) Write an equation for the figure below and take the Laplace transform of it. (Problem 5-18) i(t) 4A 3 6 9 12 15 18 Time (sec) u(t-a) = ε − as f(t) = 4u(t) – 4u(t-3) + 4u(t-6) – 4u(t-9) + 4u(t-12) – 4u(t-15) + 4u(t-18) 4 4ε −3 s 4ε −6 s 4ε −9 s 4ε −12 s 4ε −15 s 4ε −18 s Lf(t) = − + − + − + s s s s s s s 4 −3s −6s −9 s −12 s −15 s −18 s Lf(t) = (1 − ε + ε − ε + ε −ε + ε ) √, 10/10 s 7) Determine the roots of the following polynomials and classify them according to real, complex, or imaginary. Write each polynomial in factored form. Also use MATLAB function to verify answer. (Problem 5-19a & 5-19e). 10/10 (a) 2s+8 √ 2s = -8 ⇒ s = -4; 2(s+4) , real >> a=[2 8] a= 2 8 >> roots(a) ans = -4 (e) s 2 +25 √ s 2 = -25 ⇒ s = ± j 5; ( s − j 5)( s + j 5), imaginary >> e=[1 0 25] e= 1 0 25 >> roots(e) ans = 0 + 5.0000i 0 - 5.0000i 8) Determine the roots of the following polynomials and classify them according to real, complex, or imaginary. Write each polynomial in factored form. Also use MATLAB function to verify answer. (Problem 5-20). 10/10 (a) s 2 + 200s + 50,000 2 2 −b − 200 ⎛b⎞ ⎛ 200 ⎞ ± ⎜ ⎟ −c = ± ⎜ s= ⎟ − 50,000 2 2 ⎝2⎠ ⎝ 2 ⎠ s = -100 ± j 40,000 = −100 ± j 200 s = (-100 ± j 200) , complex, (-100s+j200)(-100s-j200)√ >> a=[1 200 50000] a= 1 200 50000 >> roots(a) ans = 1.0e+002 * -1.0000 + 2.0000i -1.0000 - 2.0000i (b) s 2 + 10,000√ s 2 = −10,000 → s = j 10,000 → s = ± j100 s = ± j100 , (s+j100)(s-j100), imaginary >> b=[1 0 10000] b= 1 0 >> roots(b) ans = 1.0e+002 * 0 + 1.0000i 0 - 1.0000i 10000 (c) s 3 +6 s 2 + 33s + 50 (s=-2 is a root)√ (s+2)(s 2 +4s + 25) 2 2 −b −4 ⎛b⎞ ⎛4⎞ s= ± ⎜ ⎟ −c → ± ⎜ ⎟ − 25 ⇒ s = −2 ± j 21 2 2 ⎝2⎠ ⎝2⎠ s = -2, -2+ j 21,−2 − j 21 , (s+2)(s 2 +4s + 25) , complex >> c=[1 6 33 50] c= 1 6 33 50 >> roots(c) ans = -2.0000 + 4.5826i -2.0000 - 4.5826i -2.0000 (d) s 4 + 4s 3 + 14 s 2 + 20 s + 25 (s=-1+j2 is a root)√ (s+1-j2)(s+1+j2) → s 2 + 2s + 5 ,complex conjugate By factoring s 2 + 2s + 5 from the original s 4 + 4s 3 + 14s 2 + 20s + 25 We find that the other factor is s 2 + 2 s + 5 and therefore ( s 2 + 2 s + 5 )( s 2 + 2 s + 5 ) = s 4 + 4s 3 + 14s 2 + 20s + 25 ∴ s = -1+j2, -1+j2, -1-j2, -1-j2, ( s 2 + 2 s + 5) 2 , complex >> d=[1 4 14 20 25] d= 1 4 14 20 >> roots(d) ans = -1.0000 + 2.0000i -1.0000 - 2.0000i -1.0000 + 2.0000i -1.0000 - 2.0000i 25 (e) s 4 + 13s 2 + 36 , Since the multiplication of 4 and 6 and the summation of 4 and 6 fit the above equation. The factors are as follows:√ ( s 2 + 4)( s 2 + 9) , s = ± j 2, s = ± j 3 , Imaginary >> e=[1 0 13 0 36] e= 1 0 13 0 36 >> roots(e) ans = 0 + 3.0000i 0 - 3.0000i 0 + 2.0000i 0 - 2.0000i In problems 9-12, determine the inverse Laplace transforms of the functions given using Table 5-1 on page 170 and Table 5-2 on page 173. 9) V(s) = 8 ; L −1 V(s) = 8 ε −3t s+3 (Problem 5-21)√ 10/10 3 4 (Problem 5-22), 9/10 + ; L −1 I(s) = 2δ(t)+3+4t s s2 4(8) 32 11) F(s) = 2 ; L −1 F(s) = 2 = 4 sin(8t ) (Problem 5-23)√, 10/10 s + 64 s + 82 10s 10( s) 12) I(s) = 2 ; L −1 I(s) = 2 = 10 cos(5t ) (Problem 5-24)√, 10/10 s + 25 s + 52 10) I(s) = 2 + Deleted: dt +
© Copyright 2026 Paperzz