Math 40 Chapter 4 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 40 Lecture Notes Section 4.1 Multiplication With Exponents Product Rule for Exponents am · an = am+n Simplify. 1. 22 · 2 6 2. x7 x4 3. y · y 3 · y 5 4. 43 · 44 5. (3x6 )(5x) 6. (−2x3 p2 )(4xp10 ) 7. (2x5 )3 (3x4 ) 8. (5a3 )2 (2a7 ) 2. 4,000,000 Scientific Notation Write each number in scientific notation. 1. 730,000 Section 4.1 continued on next page. . . 2 Section 4.1 M. Ornelas Math 40 Lecture Notes Write each number in standard notation. 1. 7.7 × 108 2. 1.025 × 103 Simplify the expression and write answer in scientific notation. (4 × 1010 )(3 × 103 ) Section 4.2 Division With Exponents Zero Exponent If a does not equal 0, then a0 = 1. Simplify. 1. 70 2. −70 3. (2x + 5)0 4. Quotient Rule for Exponents am = am−n an Section 4.2 continued on next page. . . 3 2x0 Section 4.1 (continued) M. Ornelas Math 40 Lecture Notes Simplify. 1. x7 x4 2. 58 52 3. 20x6 4x5 4. 12y 10 z 7 14y 8 z 7 2. (−4)−4 4. m5 m15 6. 1 t−5 Negative Exponents a−n = 1 an Simplify. 1. 5−2 −3 3. 2x 5. 2−1 + 3−2 Section 4.2 continued on next page. . . 4 Section 4.2 (continued) M. Ornelas Math 40 Lecture Notes 7. 3x3 y 2 z 27xy 2 z 3 8. 9. 2x−7 y 2 10xy −5 10. 2−3 2−1 (3x−3 )(x2 ) x6 Power Rule, Power of a Product and Quotient Rules for Exponents 1. (am )n = am·n 2. (ab)m = am bm 3. a n b = an bn Simplify. 1. (x5 )7 3. 3p4 q5 2. (5x2 )3 4. (5x−6 y 2 )2 (x5 y −6 )−3 2 Section 4.2 continued on next page. . . 5 Section 4.2 (continued) M. Ornelas Math 40 Lecture Notes Scientific Notation Write each number in scientific notation. 1. 0.000045 2. 0.00000105 2. 5 × 10−3 Write each number in standard notation. 1. 3.08 × 10−6 Simplify the expression and write answer in scientific notation. 1. 2.5 × 10−6 5 × 10−4 2. (8 × 104 )(5 × 1010 ) 2 × 10−7 Section 4.3 Addition and Subtraction of Polynomials Definitions 1. A polynomial is a finite sum of terms. 2. The degree of a polynomial is the largest degree of all its terms. Section 4.3 continued on next page. . . 6 Section 4.2 (continued) M. Ornelas Math 40 Lecture Notes Section 4.3 (continued) Find the degree of each polynomial and indicate whether the polynomial is also a monomial, binomial, or trinomial. 1. 3 7x3 − x + 2 4 2. n5 − 4n3 + 2n − 7 3. 9a2 + 2 4. 8x5 + 5x3 + 1 Evaluating a Polynomial Evaluate the polynomial 3x2 − 2x − 5 for x = −3. Combining Like Terms Add or Subtract. 1. (7y 3 − y 2 − y + 11) + (5y 3 − 4y − 6) 2. 8x4 − 5x + 3x4 + 2x 4 3 4 3 4. 3. (13a − 7a − 9) − (−2a + 8a − 12) 5. Subtract 5x2 y 2 − 3xy 2 + 5y 3 from 11x2 y 2 − 7xy 2 Section 4.3 continued on next page. . . 7 1 5 3 1 x − x− 8 4 3 1 3 1 1 − − x + x− 2 4 3 M. Ornelas Math 40 Lecture Notes Section 4.4 Multiplication of Polynomials Multiply. 1. (3x4 )(2x2 ) 3. −3x2 (4x2 − 6x + 1) 2. (−5m3 np2 )(−8mnp5 ) 4. −x2 y(7x2 y + 3xy − 11) (2x − 3)(x2 − 6x + 7) Multiply and simplify the product if possible. 1. (x + 3)(2x + 5) 2. 3. (2x − 7)(3x − 4) 4. 5. (3a4 + 2)(2a2 + 5) Section 4.4 continued on next page. . . 6. 8 2x − 1 2 3 x+ 2 (x + 4)(x − 5) + (−5)(2) Section 4.3 (continued) M. Ornelas Math 40 Lecture Notes Section 4.5 Special Products Square of a Binomial (a + b)2 = a2 + 2ab + b2 (a − b)2 = a2 − 2ab + b2 Product of the Sum and a Difference (a + b)(a − b) = a2 − b2 Multiply. 1. 2. (x + 5)2 2 2 3. (4m − 3n) 5. (7y 5 + 6)(7y 5 − 6) Section 4.5 continued on next page. . . (4y + 1)2 4. 6. 9 1 t + 5 2 1 2 t − 5 (x + 5)2 − (x − 5)2 Section 4.4 (continued) M. Ornelas Math 40 Lecture Notes Section 4.5 (continued) Section 4.6 Division of Polynomials Dividing a Polynomial by a Monomial 1. Divide 18a3 − 12a2 + 30a by 6a 2. 3x5 y 2 − 15x3 y − x2 y − 6x x2 y Dividing by a Polynomial 1. Divide 2x2 − x − 10 by x + 2 2. (6x2 − 19x + 12) ÷ (3x − 5) 3. (5x3 + 9x2 − 10x + 30) ÷ (x + 3) 4. Divide x3 + 4x + 5 by x + 1 10
© Copyright 2026 Paperzz