MATH11007 SOLUTION 21: POLAR COORDINATES (1) (a) (b) (c) (d) > > > > plots[polarplot]([1+sin(theta),theta,theta=0..2*Pi]); plots[polarplot]([1+2*cos(theta),theta,theta=0..2*Pi]); plots[polarplot]([cos(3*theta),theta,theta=0..2*Pi]); plots[polarplot]([sqrt(cos(2*theta)), theta,theta=0..2*Pi]); (2) To find the curvature κ, we write the equation of the curve in the polar form r = R(θ) and use the formula 2 R + 2(R0 )2 − RR00 . κ= 3 [R2 + (R0 )2 ] 2 (a) This is the equation of an expanding spiral; the curvature e−θ κ= √ 2 decreases exponentially as θ increases. (b) κ = 2, showing that this is the equation of a circle of radius 1/2. (c) A lemniscate; the curvature is 3p κ= cos(2θ) . 2 (d) Another circle; the curvature is 2/5. (3) There are two equally natural ways of doing these calculations: one is to use the chain rule, i.e. ∂ ∂ ∂ = cos θ + sin θ ∂r ∂x ∂y ∂ ∂ ∂ = −r sin θ + r cos θ . ∂θ ∂x ∂y and The other is to set x = r cos θ and y = r sin θ in the formula for f and then calculate the partial derivatives directly. The solution will illustrate both approaches. (a) fx = y and fy = x. By the chain rule ur = cos θy + sin θx = 2r sin θ cos θ = r sin(2θ) and uθ = −r sin θy + r cos θx = r2 cos(2θ) . c University of Bristol 2012. This material is copyright of the University unless explicitly stated otherwise. It is provided exclusively for educational purposes at the University and is to be downloaded or copied for your private study only. 1 2 MATH11007 SOLUTION 21: POLAR COORDINATES (b) fx = fy = cos(x + y). By the chain rule, ur = [cos θ + sin θ] cos(x + y) = [cos θ + sin θ] cos (r cos θ + r sin θ) and uθ = [−r sin θ + r cos θ] cos(x + y) = r (cos θ − sin θ) cos (r cos θ + r sin θ) . √ (c) Here u = 1 + r2 . Hence r and uθ = 0 . ur = √ 1 + r2 (d) For r 6= 0, u = 2 ln r and so 2 r ur = and uθ = 0 . (4) We start from the formulae ∂ sin θ ∂ ∂ = cos θ − ∂x ∂r r ∂θ and ∂ ∂ cos θ ∂ = sin θ + . ∂y ∂r r ∂θ Then sin θ ∂ ∂ sin θ ∂ ∂2 ∂ − cos θ − = cos θ ∂x2 ∂r r ∂θ ∂r r ∂θ 2 ∂ sin θ ∂ sin θ ∂ 2 = cos θ cos θ 2 + 2 − ∂r r ∂θ r ∂r∂θ 2 sin θ ∂ ∂ cos θ ∂ sin θ ∂ 2 − − sin θ + cos θ − − r ∂r ∂θ∂r r ∂θ r ∂θ2 2 sin θ cos θ ∂ 2 sin θ cos θ ∂ 2 sin2 θ ∂ sin2 θ ∂ 2 ∂2 + − + + . ∂r2 r2 ∂θ r ∂θ∂r r ∂r r2 ∂θ2 A similar calculation yields = cos2 θ ∂2 ∂2 2 sin θ cos θ ∂ 2 = sin θ − 2 2 ∂y ∂r r2 ∂θ 2 sin θ cos θ ∂ 2 cos2 θ ∂ cos2 θ ∂ 2 + + . r ∂θ∂r r ∂r r2 ∂θ2 So, adding the two, we obtain + 1 ∂2 ∂2 ∂2 ∂2 1 ∂ + + = + . ∂x2 ∂y 2 ∂r2 r ∂r r2 ∂θ2 (5) R is the section of an annulus in the right-half plane. We have ZZ 2 Z π/2 √ Z x dxdy = R 2 2 2 Z π/2 r cos θ rdrdθ = −π/2 1 −π/2 √ r4 2 2 cos θ dθ 4 1 Z π/2 3 3π = cos2 θ dθ = . 4 −π/2 8 MATH11007 SOLUTION 21: POLAR COORDINATES 3 (6) This is the portion of the annulus that lies above the line y = x. ZZ R Z xy dxdy = x2 + y 2 5π/4 π/4 √ Z 2 1 √ cos θ sin θ 2 cos θ sin θ rdrdθ = r dθ 2 1 π/4 Z 5π/4 sin2 θ 5π/4 1 = 0. cos θ sin θ dθ = = 2 π/4 4 π/4 Z 5π/4 (7) In each case, we first write the integral in the form ZZ f (x, y) dxdy R and then switch to polar coordinates. (a) Here R is the circle of radius a centered at the origin. Hence the integral is 2π Z Z 0 a rdrdθ = πa2 . 0 (b) Here R is the portion of the same circle contained in the first quadrant. Hence the integral is Z π/2 Z a π/2 Z 2 r rdrdθ = 0 0 0 a4 πa4 dθ = . 4 8 (c) Here R is the portion of the previous region that lies below the line y = x. Hence the integral is π/4 Z Z a π/4 Z r cos θ rdrdθ = 0 0 0 a3 a3 cos θ dθ = √ . 3 3 2 (8) It is a good idea to use Maple’s plots[polarplot] command to visualise the region before attempting to write down the integral. The region is to the right of the y-axis and we have Z π/2 √ Z Area = cos θ Z π/2 rdrdθ = −π/2 0 −π/2 √ r2 cos θ dθ 2 0 Z π/2 cos θ sin θ π/2 = dθ = = 1. 2 2 −π/2 −π/2 4 MATH11007 SOLUTION 21: POLAR COORDINATES Also √ √ −1 cos θ dθ (1 − r2 )3/2 3 0 −π/2 0 −π/2 " 23 # Z Z i 3 θ 1 π/2 h 1 π/2 θ 1 − (1 − cos θ) 2 dθ = 1 − 1 − cos2 + sin2 dθ 3 −π/2 3 −π/2 2 2 " " 32 # 32 # Z Z 1 π/2 2 π/2 2 θ 2 θ 1 − 2 sin 1 − 2 sin = dθ = dθ 3 −π/2 2 3 0 2 Z Z √ √ 2 π/2 θ 2 π/2 θ θ 1 − 8 sin3 1 − 8 sin = dθ = 1 − cos2 dθ 3 0 2 3 0 2 2 π √ 2 θ 2 θ 2 θ − 8 −2 cos + cos3 3 2 3 2 0 ( " √ √ # ) √ 2 π √ 2 2 8 2 = − 8 −2 + + 8 −2 + ≈ 0.75 . 3 2 2 3 8 3 Z π/2 Z cos θ Volume = p 1 − r2 rdrdθ = Z π/2 (9) Let R be the disk of radius 1 centered at the origin. The volume removed is twice ZZ p Z 2π Z 1 p Z 2π −1 1 4 − x2 − y 2 dxdy = 4 − r2 rdrdθ = (4 − r2 )3/2 dθ 3 0 R 0 0 0 Z 2π h i √ 3 3 2π 1 4 2 − 3 2 dθ = 8−3 3 . 3 0 3 (10) We have Z 2π Z I(a, b) = 0 a b b − a r−n rdrdθ = 2π ln ab b2−n −a2−n 2−n So the limit only exists if n = 1. if n = 1 if n = 2 . if n > 2
© Copyright 2026 Paperzz