(1) (a) - University of Bristol

MATH11007 SOLUTION 21: POLAR COORDINATES
(1) (a)
(b)
(c)
(d)
>
>
>
>
plots[polarplot]([1+sin(theta),theta,theta=0..2*Pi]);
plots[polarplot]([1+2*cos(theta),theta,theta=0..2*Pi]);
plots[polarplot]([cos(3*theta),theta,theta=0..2*Pi]);
plots[polarplot]([sqrt(cos(2*theta)),
theta,theta=0..2*Pi]);
(2) To find the curvature κ, we write the equation of the curve in the polar
form r = R(θ) and use the formula
2
R + 2(R0 )2 − RR00 .
κ=
3
[R2 + (R0 )2 ] 2
(a) This is the equation of an expanding spiral; the curvature
e−θ
κ= √
2
decreases exponentially as θ increases.
(b)
κ = 2,
showing that this is the equation of a circle of radius 1/2.
(c) A lemniscate; the curvature is
3p
κ=
cos(2θ) .
2
(d) Another circle; the curvature is 2/5.
(3) There are two equally natural ways of doing these calculations: one is to
use the chain rule, i.e.
∂
∂
∂
= cos θ
+ sin θ
∂r
∂x
∂y
∂
∂
∂
= −r sin θ
+ r cos θ
.
∂θ
∂x
∂y
and
The other is to set x = r cos θ and y = r sin θ in the formula for f and then
calculate the partial derivatives directly. The solution will illustrate both
approaches.
(a) fx = y and fy = x. By the chain rule
ur = cos θy + sin θx = 2r sin θ cos θ = r sin(2θ)
and
uθ = −r sin θy + r cos θx = r2 cos(2θ) .
c
University
of Bristol 2012. This material is copyright of the University unless explicitly
stated otherwise. It is provided exclusively for educational purposes at the University and is to
be downloaded or copied for your private study only.
1
2
MATH11007 SOLUTION 21: POLAR COORDINATES
(b) fx = fy = cos(x + y). By the chain rule,
ur = [cos θ + sin θ] cos(x + y) = [cos θ + sin θ] cos (r cos θ + r sin θ)
and
uθ = [−r sin θ + r cos θ] cos(x + y) = r (cos θ − sin θ) cos (r cos θ + r sin θ) .
√
(c) Here u = 1 + r2 . Hence
r
and uθ = 0 .
ur = √
1 + r2
(d) For r 6= 0, u = 2 ln r and so
2
r
ur =
and uθ = 0 .
(4) We start from the formulae
∂
sin θ ∂
∂
= cos θ
−
∂x
∂r
r ∂θ
and
∂
∂
cos θ ∂
= sin θ
+
.
∂y
∂r
r ∂θ
Then
sin θ ∂
∂
sin θ ∂
∂2
∂
−
cos θ
−
= cos θ
∂x2
∂r
r ∂θ
∂r
r ∂θ
2
∂
sin θ ∂
sin θ ∂ 2
= cos θ cos θ 2 + 2
−
∂r
r ∂θ
r ∂r∂θ
2
sin θ
∂
∂
cos θ ∂
sin θ ∂ 2
−
− sin θ
+ cos θ
−
−
r
∂r
∂θ∂r
r ∂θ
r ∂θ2
2 sin θ cos θ ∂
2 sin θ cos θ ∂ 2
sin2 θ ∂
sin2 θ ∂ 2
∂2
+
−
+
+
.
∂r2
r2
∂θ
r
∂θ∂r
r ∂r
r2 ∂θ2
A similar calculation yields
= cos2 θ
∂2
∂2
2 sin θ cos θ ∂
2
=
sin
θ
−
2
2
∂y
∂r
r2
∂θ
2 sin θ cos θ ∂ 2
cos2 θ ∂
cos2 θ ∂ 2
+
+
.
r
∂θ∂r
r ∂r
r2 ∂θ2
So, adding the two, we obtain
+
1 ∂2
∂2
∂2
∂2
1 ∂
+
+
=
+
.
∂x2
∂y 2
∂r2
r ∂r r2 ∂θ2
(5) R is the section of an annulus in the right-half plane. We have
ZZ
2
Z
π/2
√
Z
x dxdy =
R
2
2
2
Z
π/2
r cos θ rdrdθ =
−π/2
1
−π/2
√
r4
2
2
cos θ dθ
4
1
Z π/2
3
3π
=
cos2 θ dθ =
.
4 −π/2
8
MATH11007 SOLUTION 21: POLAR COORDINATES
3
(6) This is the portion of the annulus that lies above the line y = x.
ZZ
R
Z
xy
dxdy =
x2 + y 2
5π/4
π/4
√
Z
2
1
√
cos θ sin θ 2
cos θ sin θ rdrdθ =
r dθ
2
1
π/4
Z 5π/4
sin2 θ 5π/4
1
= 0.
cos θ sin θ dθ =
=
2 π/4
4 π/4
Z
5π/4
(7) In each case, we first write the integral in the form
ZZ
f (x, y) dxdy
R
and then switch to polar coordinates.
(a) Here R is the circle of radius a centered at the origin. Hence the
integral is
2π
Z
Z
0
a
rdrdθ = πa2 .
0
(b) Here R is the portion of the same circle contained in the first quadrant.
Hence the integral is
Z
π/2
Z
a
π/2
Z
2
r rdrdθ =
0
0
0
a4
πa4
dθ =
.
4
8
(c) Here R is the portion of the previous region that lies below the line
y = x. Hence the integral is
π/4
Z
Z
a
π/4
Z
r cos θ rdrdθ =
0
0
0
a3
a3
cos θ dθ = √ .
3
3 2
(8) It is a good idea to use Maple’s plots[polarplot] command to visualise
the region before attempting to write down the integral. The region is to
the right of the y-axis and we have
Z
π/2
√
Z
Area =
cos θ
Z
π/2
rdrdθ =
−π/2
0
−π/2
√
r2 cos θ
dθ
2 0
Z π/2
cos θ
sin θ π/2
=
dθ =
= 1.
2
2 −π/2
−π/2
4
MATH11007 SOLUTION 21: POLAR COORDINATES
Also
√
√
−1
cos θ
dθ
(1 − r2 )3/2 3
0
−π/2 0
−π/2
"
23 #
Z
Z
i
3
θ
1 π/2 h
1 π/2
θ
1 − (1 − cos θ) 2 dθ =
1 − 1 − cos2 + sin2
dθ
3 −π/2
3 −π/2
2
2
"
"
32 #
32 #
Z
Z
1 π/2
2 π/2
2 θ
2 θ
1 − 2 sin
1 − 2 sin
=
dθ =
dθ
3 −π/2
2
3 0
2
Z
Z
√
√
2 π/2
θ
2 π/2
θ
θ
1 − 8 sin3
1 − 8 sin
=
dθ =
1 − cos2
dθ
3 0
2
3 0
2
2
π
√
2
θ 2
θ
2
θ − 8 −2 cos + cos3
3
2 3
2
0
(
" √
√ #
)
√
2 π √
2 2 8
2
=
− 8 −2
+
+ 8 −2 +
≈ 0.75 .
3 2
2
3 8
3
Z
π/2
Z
cos θ
Volume =
p
1 − r2 rdrdθ =
Z
π/2
(9) Let R be the disk of radius 1 centered at the origin. The volume removed
is twice
ZZ p
Z 2π Z 1 p
Z 2π −1
1
4 − x2 − y 2 dxdy =
4 − r2 rdrdθ =
(4 − r2 )3/2 dθ
3
0
R
0
0
0
Z 2π h
i
√
3
3
2π
1
4 2 − 3 2 dθ =
8−3 3 .
3 0
3
(10) We have
Z
2π
Z
I(a, b) =
0
a
b


b − a
r−n rdrdθ = 2π ln ab

 b2−n −a2−n
2−n
So the limit only exists if n = 1.
if n = 1
if n = 2 .
if n > 2