OPTICAL REFLECTIVITY MEASUREMENTS ON FLUID MERCURY W. Hefner, R. Schmutzler, F. Hensel To cite this version: W. Hefner, R. Schmutzler, F. Hensel. OPTICAL REFLECTIVITY MEASUREMENTS ON FLUID MERCURY. Journal de Physique Colloques, 1980, 41 (C8), pp.C8-62-C8-65. <10.1051/jphyscol:1980817>. <jpa-00220271> HAL Id: jpa-00220271 https://hal.archives-ouvertes.fr/jpa-00220271 Submitted on 1 Jan 1980 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. CoZZoque C8, suppZ6ment au n o 8, Tome 4 2 , aotit 1980, page Cg-62 JOURNAL DE PHYSIQUE OPTICAL REFLECTIVITY MEASUREMENTS ON F L U I D MERCURY W. Hefner, R.W. Schmutzler and F. Hensel Fachhereich PhysikaZische Chemie, PhiZipps-Universitat, Hans-Meemein-StraBe, 0-3550 Marburg, R.F.A. I. INTRODUCTION l i s h e d upper and lower s u r f a c e s which l e d Mercury vapour above t h e c r i t i c a l tempera- o u t of t h e h o t p a r t of t h e c e l l i n t o a c o l d t u r e i s one of t h e c l a s s i c examples i n h i g h p r e s s u r e c l o s u r e . For measurements of which a g r a d u a l i n s u l a t o r t o metal t r a n s i - t h e r e f l e c t i v i t y of mercury vapour a t tempe- t i o n o c c u r s a s t h e atoms approach eachother r a t u r e s s m a l l e r t h a n 1 3 0 0 ~t h~e s a p p h i r e win- w i t h i n c r e a s i n g d e n s i t y ( 1 ) , ( 2 ) . For mass dow was r e p l a c e d by a q u a r t z window of h i g h densities p > 9 g/cm3 both o p t i c a l and u l t r a v i o l e t t r a n s p a r e n c y . The mercury sam- electrical properties are typical for a p l e s were h e a t e d by a c y l i n d r i c a l f u r n a c e f l u i d m e t a l . For 9 g/cm3 > c o n c e n t r i c w i t h t h e c e l l s . The t e m p e r a t u r e p > 5 the trans- p o r t d a t a i n d i c a t e a f l u i d semiconductor, was measured by two thermocouples i n con- although the o p t i c a l absorption d a t a exhi- t a c t w i t h t h e o u t s i d e molybdenum w a l l c l o s e b i t an o p t i c a l band gap f o r only (31, ( 4 ) P 3 < 5 g/cm - t o t h e Hg-sample. The t e m p e r a t u r e of t h e sample was c a l i b r a t e d by employing t h e most The purpose of t h e p r e s e n t b r i e f paper i s a c c u r a t e a v a i l a b l e vapour p r e s s u r e d a t a (6). t o p r e s e n t new measurements of t h e r e f l e c - A t a g i v e n p r e s s u r e , t h e v a p o r i z a t i o n tempe- t i v i t y o f l i q u i d mercury from 0.5 t o 4 and r a t u r e c o u l d e a s i l y be found a s an a b r u p t p a r t l y t o 5.5 eV i n t h e d e n s i t y range from change i n t h e r e f l e c t i v i t y when t h e Hg-sam- 0 t o 13 g/cm3. p l e i s v a p o u r i z e d . The c e l l , t o g e t h e r w i t h The measurements a r e i n t e n - ded t o o v e r l a p and supplement t h o s e by Ike- t h e s u r r o u n d i n g f u r n a c e was mounted i n s i d e z i e t a l . ( 4 ) who s t u d i e s t h e r e f l e c t i v i t y a high pressure s t a i n l e s s s t e e l autoclave. from 0 . 5 t o 3 eV a t d e n s i t i e s between 4 The o p t i c a l system employed t o measure t h e and 13.6 g/cm 3 . r e f l e c t i v i t y was t h e r e c o r d i n g s p e c t r o p h o tometer Cary 17H w i t h a u s e f u l photoenergy II EXPERIMENTAL r a n g e from 0.5 t o 6 eV. The d a t a were taken The r e f l e c t i v i t y d a t a d e s c r i b e d i n t h i s pa- f o r t h e i n c i d e n t l i g h t n e a r l y normal t o t h e p e r were o b t a i n e d by u s e of an experimental s u r f a c e between mercury and t h e window. arrangement t h e d e t a i l s of which a r e d e s cribed i n ref.(5). B r i e f l y , t h e f l u i d mer- I11 RESULTS AND DISCUSSION c u r y samples were c o n t a i n e d i n c y l i n d r i c a l I n f i g . 1 we show some s e l e c t e d r e s u l t s o f molybdenum c e l l s c l o s e d a t one end by a 12 t h e r e f l e c t i v i t y of l i q u i d mercury i n t h e cm l o n g s y n t h e t i c s a p p h i r e window w i t h po- energy range between 0 . 5 eV and 4 . 0 eV mea- Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980817 ' 0 ° 0 Because of t h e l i m i t a t i o n s of t h e r e f l e c t i v i t y measurements t o a r e l a t i v e l y s m a l l frequency range due t o t h e c u t o f f of t h e s a p - x- f - 12.80 ( 1 ) phire-window t h e u s u a l Kramers-Kronig gna- 11.80 ( 2 ) 11 .oo ( 3 ) 10.10 ( 4 ) l y s i s i s n o t a p p l i c a b l e t o a n a l y z e t h e data. I n p l a c e o f t h a t we used a c l a s s i c a l o s c i l - - 5 K 0.0 1.O 2.0 Energy [eVl Fig.1 9.m (5) l a t o r f i t method (9) t o e x t r a c t t h e r e a l 8.00 ( 6 ) part 3.0 and t h e imaginary p a r t E~ of t h e d i e l e c t r i c c o n s t a n t . T h i s method i s based L.0 5.0 on t h e u s e of a simple a n a l y t i c a l form f o r Reflectivity as a function of photon energy t h e d i e l e c t r i c f u n c t i o n which c o n s i s t s of a a t different densities. sum of c o n t r i b u t i o n s from damped o s c i l l a t o r s and a D r u d e - l i k e p a r t . The f i t t i n g procedu- sured over t h e s u b c r i t i c a l temperature r e i n v o l v e s an o p t i m i z a t i o n p r o c e s s where range 4 0 0 ' ~ t o 1 4 7 0 ~ ~The . corresponding 3 d e n s i t i e s between 12.8 g/cm3 and 8 g/cm (7) t h e d i f f e r e n t p a r a m e t e r s a r e chosen, t h e a t p r e s s u r e s s l i g h t l y h i g h e r t h a n t h e vapour w i t h t h e e x p e r i m e n t a l r e s u l t s . T h i s proce- p r e s s u r e s a r e l a b e l l e d a t each c u r v e i n fig. d u r e i s r e p e a t e d t o y i e l d good agreement 1 . A d i r e c i t comparison of t h e p r e s e n t r e - between t h e e x p e r i m e n t a l and t h e c a l c u l a t e d s u l t s with the recent data of Ikezi e t a l . r e s u l t s . The d i f f e r e n c e s between t h e c a l c u - (4) i n t h e energy range between 0.5 eV and l a t e d and measured R-values were minimized 3 eV g i v e s e x c e l l e n t agreement w i t h i n t h e using a standard curve-fitting-procedure a c c u r a c y of t h e measurements. The shape of ( 1 0 ) . The good agreement between t h e o a l c u - the r e f l e c t i v i t y curves (especially, t h e l a t e d and t h e measured r e f l e c t i v i t y d a t a enhanced R i n t h e low energy range) f o r den- o b t a i n e d a t t h e end of t h e f i t t i n g procedu- s i t i e s of 12.8 g/cm3 and 11 . 0 g/cm3 i s v e r y r e i s demonstrated by f i g . 1 . s i m i l a r t o t h a t observed f o r normal m e t a l l i c F i g s . 2 and 3 show t h e r e a l p a r t of t h e d i - l i q u i d mercury a t room t e m p e r a t u r e ( 8 ) . A t e l e c t r i c constant s m a l l e r d e n s i t i e s R d e c r e a s e s and a t t h e t i v i t y a(w) same time t h e low energy enhancement i s r e - a t d i f f e r e n t d e n s i t i e s a s a f u n c t i o n of t h e duced. F i n a l l y , f o r d e n s i t i e s s m a l l e r t h a n photon energy. The d . c . c o n d u c t i v i t y a ( 0 ) (7) 9 g/cm5 t h e energy-dependence of R resembles i s q u i t e c l o s e t o t h e v a l u e o b t a i n e d by t h e t h a t of l i q u i d semiconductors, i . e . R f a l l s e x t r a p o l a t i o n of u(w). The behaviour o f o f f i f t h e photon energy approaches z e r o . b o t h q u a n t i t i e s , u(w) and e l (a) , p r o v i d e a This is consistent with the conductivity new i l l u s t r a t i o n of t h e g r a d u a l d i s a p p e a - and thermopower which assume v a l u e s t y p i c a l r a n c e of t h e m e t a l l i c p r o p e r t i e s i n expan- o f l i q u i d semiconductors i n t h i s d e n s i t y ded Hg which i s c o n s i s t e n t w i t h t h e p r e - range. v i o u s r e s u l t s of t h e d.c . c o n d u c t i v i t y (7.) r e f l e c t i v i t y i s c a l c u l a t e d and compared = w E, (LO)and t h e a . c .conduc- ~ ~ ( w ) / 4ofa l i q u i d mercury , JOURNAL DE PHYSIQUE C8-64 ponds to the metallic strong scattering range ( 7 ) , a change in the behaviour of is exhibited. E, at the lowest energies reached in the present experiment changes its sign from negative at the high densities to positive at the low densities (fig. 2). At the same time in the same low energy range a qualitative change of the slope of the o(w)-curve is observed. Finally, for densities smaller than 9 g/cm3 the shapes of the 1.0 20 Energy CeVI 3.0 1.0 I E, (w) - and o(w)-curves resemble those of liquid semiconductors exhibiting that 5.0 the dielectric constant is essentially determined by contributions which originate Fig.2 Calculated real part of the dielectric confrom interband transitions. Pbre physical stant as a function of the photon energy. insight about the transformation to a nonThe labelled n~rmbersrefer to the densities given in fig.I metallic state in expanded mercury can be . obtained from an analysis of the density dependence of E, at densities lower than 8 g/cm 3 . It is an experimental fact that in the limit of very low densities (e.g.p smaller than about 3 g/cm 3) even at high tempe~ d.c.conducratures of more than 1 5 0 0 ~the tivity a (0) assumes very low values (1 3) . Thus according to the Kramers-Kronig dis0.0 1.0 20 Energy lev1 3.0 persion relations it is obvious that LO 5.0 E~ at 6.0 Fig.3 Calculated conductivity as a function of low frequencies is always positive. Furthermore, it has been demonstrated by measure- photon energy. The labelled numbers refer ments of the density-dependence the optical to the densities given in fig.1. absorption edge (3), (4) that an energy gap exists in expanded mercury for densities thermopower (1 1) and the Hall-effect (1 2). smaller than 5 g/cm3 which increases with The decrease of the Drude-like low frequen- decreasing density. Consequently in the cy conductivity observed for liquid Hg at 3 room temperature (p = 13.6 g/cn ) (8),(4) is low density range clearly evident in fig.3. In the density ty. range between 1 1 and 9 g/cm5, for which the Fig.4 shows c, at a photon energy of 0.6 conductivity values show that it corres- eV of fluid mercury as a function of the E, at low frequencies is expected to decrease with decreasing densi- analysis of reflectivity, absorption and d. c.conductivity data it can be shown(l4) that the a.c.conductivity has a strong maximum . at low frequencies ( w < 0.5 eV) We attempted successfully to explain the positive rise in cl (5) and the maximum in the experimentally observed frequency dependence of o(w) (14) with the increasing importance of clusters in the dense, weakly ionized mercury plasma. The results of this attempt will be published elsewhere. REFERENCES 1 Hensel,F.,1976,Liquid Metals,ed.R.Evans and D.A. Greenwood (London: Institute of Physics) p.372 2 Cusack,N.E. ,1978,lletal Non-bletal Transitions in Fig.4 Density dependence of Disordered Systems,ed.L.R.Friedman and D.P.Tun- at a constant stall. Scottish Universities Summer School in energy in the low density range Physics, Edinburgh density at the constant supercritical tem- 3 Uchtmann,H.and Hensel,F.,1975,Phys.Lett.53A,239 - . comparison we show perature of 1 5 3 0 ~ ~For 4 Ikezi,H.,Schwarzenegger,K.,Simons,A.L.,Passner, also in fig.4 a graph (lower line) of the calculated with the Clau- behaviour of A.L. ,McCall,S.L., 1978,Phys.Rev.B 18,2494 5 Hefner,lbl.,1980,Thesis University of Marburg sius-E4osotti relation for w = 0 using the 6 Schmutzler,R.W., private communication polarizability of the isolated Hg-atom. A 7 Schonherr,G.,Schmutzler,R.W.and Hensel,F.,1979, Phi1.Wag.B 40, 411 striking upward deviation from ClausiusMosotti behaviour is observed in the densi3 ty range between 2.2 g/cm3 and 2.8 g/cm 8 Choyke,W.J.,Vosko,S.H.and The results exhibit a rise in 9 Verleur,H.W.,1968, J.Opt.Soc.Am. . to nearly 10 at 2.8 g/cm3 before abruptly a smooth decrease sets in with increasing density in the direction to negative values characteristic of the behaviour for metals (e.g. p = 10 g/cm3 in fig. 2). decrease in E, The onset of the is accompanied by the ap- pearance of strongly density- and temperature dependent absorption-tails for photon energies smaller than 1 eV. From a careful OTKeefe,T.W.,1971, Sol.State Corn. 9, 361 2, 1366 10 Nelder,J.A.and Mead,R.,1965,Comput.J. 7, 308 11 Schmutzler,R.W.and Hensel,F.,1972, Ber.Bunsen- ges.phys.Chem. 76, 531 - 12 Even,U.and Jortner,J.,1972,Phys.Rev.Lett.28,31 13 Schmutzler,R.W.,Hensel,F.and,Franck,E.U.,1968, Ber.Bunsenges.phys.Chem. 14 Uchtmann,H.,Hensel,F.and Mag., in press. 72,1194 Overhof,H.,1980,Phil.
© Copyright 2026 Paperzz