Asimplepredictorbasedondelay‐inducednegativegroupdelay Revised8/19/201613:16:00 HenningU.Voss WeillCornellMedicalCollege,CitigroupBiomedicalImagingCenter 516East72ndStreet,NewYork,NY10021,USA e‐mailaddress:[email protected] Averysimplelinearsignalpredictorthatusespastpredictedvaluesratherthanpastsignalvalues forpredictionispresented.Man‐madeornaturalsystemsutilizingthispredictorwouldnotrequire a memory of input signal values but only of already predicted, internalized states. This delay‐ inducednegativegroupdelay DINGD predictoraffordsreal‐timepredictionofsignalswithoutthe needforaspecificsignalmodel.Itspropertiesarederivedanalyticallyandarenumericallytested onvarioustypesofbroadbandinputdata. Keywords:Prediction,forecasting,negativegroupdelay Introduction Negativegroupdelay NGD ofaninput/outputsystemcausestheoutputsignaltoanticipateorpredict characteristics of the input signal. NGD and the related concept of negative group velocity have been theorized and experimentally found in systems with anomalous dispersion 1‐4 , metamaterials 5‐7 , transmissionlines 8,9 ,andelectroniccircuits 10‐13 .Recently,ithasbeenshownthatnegativegroup delay can also occur in continuous‐time systems with time‐delayed feedback, or mathematically, non‐ autonomousdelay‐differentialequations 14 .Timedelaysareatypicalcomponentofbiologicalneuronal networks,anditisreasonabletohypothesizeapossiblerelevanceofthis delay‐inducednegativegroup delay DINGD mechanisminneuronalcomputations 15 involved,forexample,inhumanmotorcontrol 16 . The pioneering paper of Mitchell and Chiao 17 experimentally demonstrated NGD for Gaussian waveformsinanelectroniccircuitandalsoshowedthatcausalityisretained.Theyusedtheconceptof transferfunctions,fromwhichthefrequencydependentgroupdelaycanbederivedforanyinputsignal waveformindependentofitsshape.Therefore,somesystemswithNGDcanbeviewedasreal‐timesignal predictors 18 ,whichcanbeunderstoodbyanalyzingtheirtransferorfrequencyresponsefunctions.The absolutevalueofthegroupdelaythendefinesthepredictionhorizon,i.e.,thetimetheoutputy t ,here calledapredictor,predictstheinputx t aheadoftime. In this tutorial‐style manuscript very simple, probably the simplest possible, DINGD predictors are introduced.Theyaregivenbydiscrete‐timesystems,whichsimplifiesnumericalsimulationsandwould allow for digital signal processing implementation. They are still delay‐induced NGD predictors in the followingsense:Itwillturnoutthatthesepredictorsdonotusepastinputsignalvaluesx t‐1 ,x t‐2 ,… forprediction,asmostconventionalpredictorsdo,butonlypreviouslypredictedoutputvaluesy t‐1 ,y t‐ 2 ,…,alongwiththepresentinputvaluex t .Thepreviouslypredictedoutputvaluesaredelayedfeedback inputstothepredictor.Thisschemecouldhaveadvantagesinnaturalorman‐madeapplications. In the following, discrete‐time DINGD predictors will be described, theoretically analyzed, and their performance will be illustrated with various numerical simulations of real‐time, broadband signal prediction. TheDINGDpredictor ThesimplestDINGDpredictorisdefinedasthediscrete‐timenon‐autonomouslinearsystem y t bx t cy t τ , 1 wherex t isascalarinputsignalwhoseforthcomingvaluesaretobepredictedbyy t ,banon‐zeroinput scaling parameter, c a non‐zero delayed feedback gain, and τ a positive integer, a time delay. Time is restrictedtomultiplesofasamplingtimeintervalΔt,i.e.,t …,‐Δt,0,Δt,2Δt,….Forsimplicity,wesetΔt 1inthefollowing,suchthatt …,‐1,0,1,2,…andτ 1,2,…. In order to understand how the discrete‐time DINGD predictor predicts, it is necessary to derive its frequency‐dependentgroupdelay.AlthoughEq. 1 looksquitesimple,itwasnotpossibleformetoderive itspredictionpropertiesbyanyother,moreintuitive,means. Anattempthasbeenmadeforthetime‐ continousanalogueofEq. 1 inRef. 14 ,whereaheuristicexplanationwasprovidedtorelateitsbehavior to anticipatory synchronization 19 , called „anticipatory relaxation dynamics“. In Ref. 20 it had been conjecturedthatanticipatorysynchronizationisrelatedtothefindingsofMitchellandChiaobutitwasnot specifiedhowexactly. The frequency response function defines the input/output relationship between x t and y t under steady‐stateconditionsinFourierspaceas Y ω H ω X ω , whereω 2πfisthefrequencyinrad/time,fisfrequencyinoscillations/time,x t X ω e dω,and y t Y ω e dω.ThelattertwoexpressionsareinverseFouriertransforms;thesignconventionhere isoppositetoRef. 17 ,followingthemajorityoftheliterature. Thefrequencyresponsefunctioncanbewrittenintermsofphaseandgainas H ω |H ω |e . Thefrequencyresponsefunctionofthediscrete‐timeDINGDpredictor 1 canbefoundbyinsertingthe inverseFouriercomponentsofxandyintothepredictor.Itis b b 2 H ω 1 c cos ωτ i c sin ωτ 1 ce β ω with β ω 1 Itsgainis |H ω | anditsgroupdelay δ ω dΦ ω dω 2ccos ωτ |b| β ω c . , cτ c cos ωτ β ω . 3 Thelatterexpressionisproperlydefinedoutsideofthepolesofthefrequencyresponsefunctiononly. Inordertomakepredictionsonesamplestepormoreahead,weareseekingtoobtainanintegergroup delayδ ‐1forτ 1 causalsystem and0 c 1 toavoidinstability .Itismostinstructivetofirst considerthezerofrequencycase ω 0 andfromtheretoderivethegroupdelayforgeneralfrequencies. Thegroupdelayforzerofrequenciesis cτ 4 δ 0 . 1 c Specificcasesforthetimedelayτareconsidered: •τ 1:Thereisnointegersolutionforδ 0 forany0 c 1. ThisisaspecialcaseoftheelementaryNGD IIRfilterintroducedbyRavelo 21 b 0inEq. 1 there,Ts 1 . •τ 2:Forc 1thegroupdelayatzerofrequencyisδ 0 ‐1.Furthermore,thegroupdelayis‐1forall frequencieswhereitisdefined,i.e.,outsideofthepolesofthefrequencyresponsefunction.Thefrequency response function has poles defined by the zeros of its denominator. The poles are located at ω 2n 1 π/2 n 0,1,… .ThehighestfrequencyforasignalsampledwithΔt 1isωN π,sothereisone pole,atf1 ω1/2π ¼.Thispoleseparatestwofrequencybandswithqualitativelydifferentproperties: Duetoaphasejumpatf1thesecondbandcausesasignreversaloftheoutputandthuscannotbeused togetherwiththefirstbandforprediction. Figure1showsintheupperleftpanelthefrequencyresponsefunctionexpressedthroughitsgainand phase,aswellasthegroupdelayoverfrequencyforthiscase.FromthisfigureitisclearthattheDINGD predictordepends,asallNGDbasedprediction,onthefrequencycontentofthesignaltobepredicted. •τ 4:Forc 1thegroupdelayatzerofrequencyisδ 0 ‐2.Furthermore,thegroupdelayis‐2forall frequencies for which it is defined. The poles of the frequency response function are located at ω 2n 1 π/4 n 0,1,… .Therearetwopoles,atf1 ω1/2π 1/8andf2 ω2/2π 3/8.Thesetwopoles separatethreefrequencybandswithqualitativelydifferentproperties:Thefirstbandandthethirdband canbeusedcombined.Thesecondbandcausespredictionwithreversedsignandcannotbecombined withtheothertwobands.However,thisbandcouldalsobeuseful,too.Touseit,onecansetb 0inEq. 1 tocompensateforthesignreversal. Figure1showsinthelowerleftpanelthefrequencyresponsefunctionandgroupdelay. •Larger,evenτ:Itisstraightforwardtogeneralizetolargerdelaysaslongasc 1.Ingeneral,asthedelay increases,therewillbemorepoles.Thismeansthefrequencybandswillbesplitupintomoresections. Also,ingeneralthepredictionhorizonwillalwaysbehalfofthepredictorfeedbackdelayτasperEq. 4 . Inordernottocauseinstabilityofsystem 1 andalsoinphysicalimplementationsavalueofc 1might notbefeasibleanditismoreusefultoproceedwithc 1‐ε,withε≪1.Thishastheadditionaladvantage thatthepolesofthefrequencyresponsefunctionareresolvingintomereresonances i.e.,thegainisnot diverging .Figure1showsintherighttwopanelsthefrequencyresponsefunctionaswellasthegroup delayforc 0.99andτ 2,4. = 2, c = 1 4 2 2 0 0 -2 0 0.1 0.2 0.3 0.4 = 4, c = 1 4 = 2, c = 0.99 4 Gain |H| -2 Phase 0 0.1 Group Delay =-d /d 2 0 0 -2 0.3 0.4 = 4, c = 0.99 4 2 0.2 -2 0 0.1 0.2 0.3 0.4 normalized frequency f 0 0.1 0.2 0.3 0.4 normalized frequency f Figure1:TheoryI. Gainandphaseoffrequencyresponsefunction 2 aswellascorrespondinggroupdelay 3 forfeedback delaysτ 2 toprow andτ 4 bottomrow ,forfeedbackgainc 1 leftcolumn andc 0.99 right column .Themeaningofthegraphsisshowninthelegend.NotethatalthoughtheNGDisconstantovera widefrequencyrange,thegainincreasesforhighfrequencies,thusrestrictingapplicabilityoftheDINGD predictortosignalscontainingonlylowerfrequencies.ThisisdemonstratedintheapplicationsinFigs.2 to5. Applicationexamples Theperformanceofthediscrete‐timeDINGDpredictorwillbeillustratedwiththehelpoffourexamples, Figs.2to5.Theexamplesaredescribedinthefigurecaptions.Inallexamples,c 1‐ε ε≪1 isused.All computationswereperformedwithMATLABR2015a TheMathWorks,Inc.,Natick,MA . Figure2:Band‐limitednoiseI. Firstrow:Aband‐limitednoisesignalx t black,thickline anditspredictionsignaly t red ,theoutput ofthepredictor 1 .Outof1000simulatedtimepoints,100areshown. Second row, left image: The cross‐ correlation function CCF τ between x t and y t peaks at a lag of ‐1. Its peak value is CCF ‐1 0.98. This 0.2 shows that y t‐1 x t , or, 0 equivalently, y t x t 1 . Therefore, y t is a predictor of x t . x(t) -0.2 Center and right image: Scatterplots y(t) between x t and y t and between 210 220 230 240 250 260 270 280 290 300 x t and y t‐1 . These plots confirm time t that y t is more correlated with 1 0.4 0.4 x t 1 than with x t , although the 0.2 0.2 DINGDpredictor,Eq. 1 ,dependson 0.5 0 0 x t onlyandnotonx t 1 . -0.2 -0.2 0 Third row: Power spectral density -5 0 5 -0.4 0 0.4 -0.4 0 0.4 function estimates for x t black, x(t) x(t) thickline andy t red .Onecansee that frequency components of Y ω 0.4 that are closer to the resonance, |P x | 0.3 wherethegainincreases seefourth |P y | row , are amplified more, which 0.2 causesthemorejitteryappearanceof 0.1 the predictor time series y t as comparedwiththesignaltimeseries Est. Gain |H| 0 0.1 0.2 0.3 0.4 Phase 0.5 Est. x t inthefirstrow. Gain |H| 4 Phase Fourth row: Gain and phase of the Group Delay frequency response function as well 2 ascorrespondinggroupdelay.Shown areanalyticvaluesfromEqs. 2 and 0 3 ,aswellasgainandphasevalues estimatedfromthedata,asshownin -2 thelegend. 0 0.1 0.2 0.3 0.4 0.5 normalized frequency f Signal and prediction parameters: The signal x t consists of 1000 samplesofwhitenoise,low‐passfilteredwithaButterworthfilterofseventhorderwithacutofffrequency of0.15.TheparametersofEq. 1 areb 1.50,c 0.95,andτ 2. Figure3:ChirpsignalI. 1 Firstrow:Theleftplotshowsthefirst 1 x(t) 200 data points of a chirp signal a y(t) 0.5 frequency‐swept sine function x t 0 0 and its prediction signal y t . The right plot shows the last 20 data -0.5 points. Whereas an enlargement of -1 the left plot would show prediction 50 100 150 200 985 990 995 1000 with reduced amplitude , too, time t time t predictionismoreevidentintheright 1 1 1 plot with the higher frequency oscillations. The DINGD predictor 0.5 0 0 predicts the signal with the same 0 group delay of ‐1, for both very low -1 -1 and high frequencies. This is an -5 0 5 -0.5 0 0.5 1 -0.5 0 0.5 1 example for a non‐stationary signal x(t) x(t) thatstillcanbepredictedinrealtime. 4 Second row, left: The cross‐ |P x | correlationfunctionhasapeakvalue 3 |P y | of CCF ‐1 0.99. This shows that 2 y t‐1 x t ,or,equivalently,y t 1 x t 1 .Therefore,y t isapredictor of x t . Center and right: The Est. Gain |H| 0 0.1 0.2 0.3 0.4 0.5 scatterplotsconfirmthaty t ismore Est. Phase correlatedwithx t 1 thanwithx t . Gain |H| 4 Phase Group Delay Third row: Power spectral density 2 function estimates for x t black, thickline andy t red .Itisevident 0 that frequency components of the signalthatareclosertotheresonance -2 of the frequency response function 0 0.1 0.2 0.3 0.4 0.5 fourth row , where its gain normalized frequency f increases,areamplifiedmorerelative tolowerfrequencycomponents.This explains the relatively smaller amplitude of the predictor for low frequencies. In other words, the parameterbhasbeensettoprovidecorrectamplitudesforhighfrequenciesonly.Thelargeestimation errors of gain and phase for frequencies 0.15 are due to the lack of input signal power for those frequencies. Fourth row: Gain and phase of the frequency response function as well as corresponding group delay. ShownareanalyticvaluesfromEqs. 2 and 3 ,aswellasgainandphasevaluesestimatedfromthedata, asshowninthelegend. Signalandpredictionparameters:Thesignalx t consistsof1000samplesofalinearchirpsignalwith cutofffrequencyof0.15.TheparametersofEq. 1 areb 1.25,c 0.95,andτ 2. Figure 4: Band‐limited noise II – PredictionwiththesecondNGDband andagroupdelayof‐2. 0.2 Firstrow:Aband‐limitednoisesignal x t black, thick line and its 0 prediction signal y t red , the -0.2 output of the predictor 1 . Out of x(t) 1000 simulated time points, 50 are 705 710 715 720 y(t) 725 730 735 740 745 750 shown.Itisevidentthatthesignalis time t predicted two time steps ahead.It is 1 also evident that, although it is not 0.2 0.2 0.5 smooth, the signal is predicted with 0 0 0 high accuracy, including patterns of -0.2 -0.2 datapointsthatarenotformedbythe -0.5 envelopeofanoscillatorysignal. -0.4 -0.4 -4 0 4 -0.4 0 0.4 -0.4 0 0.4 x(t) x(t) Second row, left image: The cross‐ correlation function CCF τ between x t and y t peaks at a lag of ‐2. Its |P x | 0.2 peak value is CCF ‐2 0.98. This |P y | 0.15 shows that y t‐2 x t , or, 0.1 equivalently, y t x t 2 . 0.05 Therefore, y t is a predictor of x t . Center and right image: Scatterplots 0 0.1 0.2 0.3 0.4 0.5 between x t and y t and between x t and y t‐2 . These plots confirm 6 that y t is more correlated with 4 x t 2 thanwithx t . Est. |H| 2 Est. Third row: Power spectral density |H| 0 function estimates for x t black, -2 thickline andy t red . 0 0.1 0.2 0.3 0.4 0.5 Fourth row: Gain and phase of the normalized frequency f frequency response function as well ascorrespondinggroupdelay.Shown areanalyticvaluesfromEqs. 2 and 3 ,aswellasgainand phasevaluesestimatedfromthedata,as showninthelegend.Again,outsideofthesignalfrequencybandtheestimatesnaturallyhavealargeerror. Signal and prediction parameters: The signal x t consists of 1000 samples of white noise, band‐pass filteredwithaButterworthfilterofseventhorderwithcutofffrequenciesof0.18and0.32.Theparameters ofEq. 1 areb ‐1.50,c 0.90,andτ 4.NotethatthephasebehaviorofthesecondNGDbandrelative tothefirstbandrequiresanegativevaluefortheparameterb. Figure 5: Neuronal signal, predicted withagroupdelayof‐8. 2 First row: The neuronal signal x t 1 black, thick line , a local field potential from the left hippocampus 0 ofarat,obtainedfromCRCNS.org 22 -1 andfilteredasdescribedinRef. 15 . Here 1200 out of 6250 used data 200 400 x(t) 600 800 1000 1200 y(t) points are shown. The prediction time t 1 signal y t red predicts the input 2 2 x t eight time steps ahead, with an 0.5 occasionalsmalloscillatoryerror. 0 0 0 Second row, left image: The cross‐ -2 -2 -0.5 correlation function CCF τ between -50 0 50 -2 -1 0 1 -2 -1 0 1 x t and y t peaks at a lag of ‐8. Its x(t) x(t) peakvalueisCCF ‐8 0.99.Agroup delayofδ ‐8correspondstoatime 4 of6.4msintheoriginaltimescaleof the data. In Ref. 15 this signal had 2 beenpredictedwithagroupdelayof‐ 7.2msbyusingamorespecificmodel 0 based on delayed‐leak integrators, which also can have NGD, caused by the mechanism of anticipatory -2 Est. Gain |H| relaxationdynamics 14 .Centerand Est. Phase right image: Scatterplots between Gain |H| -4 x t and y t and between x t and Phase y t‐8 . Group Delay -6 Third row: Gain and phase of the frequency response function as well -8 0 0.1 0.2 0.3 0.4 0.5 ascorrespondinggroupdelay.There normalized frequency f are now τ/2 1 9 distinct frequencybandswithNGD.Duetothe choice of c 0.92 the value of δ ‐ 8.00isnotcompletelyattained;however,inpracticethesignalispredictedwithapredictionhorizonof8 duetotheintegersamplingtime. Predictionparameters:TheparametersofEq. 1 areb 1.75,c 0.92,andτ 16. Cascading Asithasbeenshownabove,onewaytoincreasetheNGDisbyincreasingthefeedbackdelayτoftheDINGD predictor. But there is another way: Feeding the output of the predictor into another predictor, or “cascading” 12, 13, 23 predictors. This way, it is possible to increase the NGD without increasing the feedbackdelay.Thishastheadvantagethatonecanworkwithadelayofτ 1;althoughtheNGDwithout cascadingwouldbe0.5,aswehaveseenbefore,withcascadingonecanagainobtainintegervalues. Cascadingm 1DINGDpredictorsinthetimedomainmeansthattheoutputy t ym t relatestothe inputx t via 5 y t bx t cy t τ , y t by t cy t τ , ... y t by t cy t τ . Thefrequencyresponsefunctionis H ω H ω Itsgainis |H anditsgroupdelay δ ω ω | |H ω | e |b| β ω dΦ ω dω / . 6 , mδ ω , 7 definedwhereverδ ω isdefined. Weconsiderthespecialcaseofm 2,τ 1first.Again,thisisaspecialcaseoftheIIRfilterconsideredin Ref. 21 ,thistimewithcascading.Asbefore,inordertomakepredictionsonesamplestepormoreahead, weneedtoobtainanintegergroupdelayδ ‐1.Sincethegroupdelayforzerofrequenciesisjustmtimes thegroupdelayforthecaseofnocascading,forc 1thegroupdelayatzerofrequencyisδ2 0 ‐1. Furthermore,forc 1thegroupdelayisconstant‐1forallfrequencieswhereitisdefined.Thepolesof thefrequencyresponsefunctionarelocatedatω 2n 1 π n 0,1,… .Therefore,thereisonlyonepole atf1 ω1/2π ½,attheedgeofthefrequencyrange. Insummary,forτ 1andm 2thegroupdelayisnegativethroughouttheentirefrequencyrange.This meansthatcascadingallowsforusingadelayofτ 1withoutasplitoffrequencybands,andtheNGDcan, intheidealcase,extendovertheentirefrequencyband.Still,thevariablegainofthefrequencyresponse functionpreventsthepredictionofsignalswithcertainfrequencies. Itisstraightforwardtoderivecaseswithτ 1andm 2etc.However,thecaseofτ 1standsoutasthe NGDbandsarenotsplitupintoseparatebands. Figure6showsexamplesform 2andm 4,againforc 1andc 1‐ε,withε≪1.Figure7provides anexample. m = 2, c = 1 4 m = 2, c = 0.99 4 2 2 0 0 -2 Gain |H| -2 Phase 0 0.1 Group Delay =-d /d 0 0.1 0.2 0.3 0.4 m = 4, c = 1 4 2 0 0 -2 -2 0 0.1 0.2 0.3 0.4 normalized frequency f 0.3 0.4 m = 4, c = 0.99 4 2 0.2 0 0.1 0.2 0.3 0.4 normalized frequency f Figure6:TheoryII–Cascading. Gain and phase of frequency response function 6 as well as corresponding group delay 7 for the cascadedsystemwithτ 1andcascadinglevelm 2 toprow andm 4 bottomrow ,forfeedback gainc 1 leftcolumn andc 0.99 rightcolumn .NotethatalthoughtheNGDisconstantoverawide frequencyrange,thegainincreasesforhighfrequencies,restrictingapplicabilityoftheDINGDpredictorto signalscontainingonlylowerfrequencies.ThisisdemonstratedintheexampleFigure7. Figure 7: Chirp signal II – Cascading fourpredictors. 1 Firstrow:Theleftplotshows50data 0.5 points of a chirp signal x t and its prediction signal y t . The right plot 0 0 shows the last 20 data points. The -0.5 DINGD predictor predicts the signal -1 with the same group delay of ‐2, for x(t) 560 570 580 590 600 985 990 995 1000 bothlowandhighfrequencies.Thisis y(t) time t time t an example for a non‐stationary 1 1 1 signal that still can be predicted in realtime. 0.5 0 0 Second row, left: The cross‐ 0 -1 -1 correlationfunctionhasapeakvalue of CCF ‐2 0.89. This shows that -2 0 2 -1 -0.5 0 0.5 -1 -0.5 0 0.5 y t‐2 x t ,or,equivalently,y t x(t) x(t) x t 2 .Therefore,y t isapredictor of x t . Center and right: The 2.5 |P x | scatterplotsconfirmthaty t ismore 2 |P y | correlatedwithx t 2 thanwithx t . 1.5 1 Third row: Power spectral density Est. Gain |H| 0.5 functionestimatesforx t andy t .It Est. Phase isevidentthatfrequencycomponents Gain 0 0.1 0.2 0.3 0.4 |H| 0.5 Phase of the signal that are closer to the Group Delay 4 resonanceofthefrequencyresponse function, which equals the Nyquist 2 frequency 0.5, are amplified more relative to lower frequency 0 components. This explains the relatively smaller amplitude of the -2 predictorforlowfrequencies. 0 0.1 0.2 0.3 0.4 0.5 normalized frequency f Fourth row: Gain and phase of the frequency response function as well ascorrespondinggroupdelay.Shown areanalyticvaluesfromEqs. 6 and 7 aswellasgainandphasevaluesestimatedfromthedata,asshown inthelegend.Thelargeestimationerrorsofgainandphaseforfrequencies 0.25areduetothelackof inputsignalpowerforthosefrequencies. Signalandpredictionparameters:Thesignalx t consistsof1000samplesofalinearchirpsignalwith cutoff frequency of 0.25. Note that the chirp frequency sweeps a larger range than in Figure 3, made possiblebythemoveoftheresonancetohigherfrequencies.TheparametersofEq. 5 arem 4,b 1.40, c 0.85,andτ 1. Shapingthefrequencyresponsebymultipledelays CascadingtwoDINGDsystemscorrespondstoatotaldelaythatislargerthanthedelaysofthesubsystems. Similarly,onecouldtrytoshapethefrequencyresponsefunctionbyusingmorethanonedelayinasingle, non‐cascaded,system.Therearemanypossibilities,andhereonlythreespecialcaseswithtwodelaysand usefulpredictionpropertiesarepresented:Ahighpass,alowpass,andabandpasssystemwithNGD.Rather than providing a detailed analysis, which would not add much to the already obtained insights, these systemsarejuststated,theirfrequencyresponsefunctionsareshown,andtheyaretestedonnumerical examples.TheDINGDsystemwithtwodelaysisgivenby y t bx t c y t τ c y t τ . 8 Thecoefficientsareassumedtobenon‐zeroandthedelaysareintegers≥1,asbeforeforthebasicDING predictor.Thetwo‐delayfrequencyresponsefunctionis b H ω . 1 c e c e With β ω 1 c c 2c c cos ω τ τ 2c cos ωτ 2c cos ωτ itfollows |b| |H ω | β ω and c τ c τ cos ωτ τ cos ω τ τ dΦ ω c τ c τ cos ωτ c c τ δ ω . dω β ω •Lowpasssystemwithc1 2,c2 1,τ1=1,τ2=2.Thephase,gain,andgroupdelayareshowninFigure8, first row. This system has a group delay of ‐1. The numerical simulation data in Figure 9 has a low‐ frequencysinusoidaladdedtoalowpassfilterednoisesignalinordertodemonstratethatlowfrequency componentsdonotdetrimentallyaffectpredictionofthehigh‐passcomponents.TheCCF,validatingthe groupdelayof‐1,looksquiteremarkable. •Highpasssystemwithc1 ‐2andotherwisesameparametersasbefore.Thissystemhasagroupdelay of‐1.Thephase,gain,andgroupdelayareshowninFigure8,secondrow.Anumericalexampleisprovided inFigure10. •Bandpasssystemwithc1 ‐2,c2 1,τ1=2,τ2=4.Thephase,gain,andgroupdelayareshowninFigure 8,thirdrow.Thissystemhasagroupdelayof‐2.Tousethissysteminsteadofthelow‐orhighpasssystems canhaveadditionaladvantagesinadditontothehigherNGD;thebehaviorofthegainallowsforsomewhat higher/lower frequency components of the signal as in the lowpass/highpass systems. Also, compared withthesingle‐delaysysteminFigure4,thistwo‐delaysystemallowsforalargersignalbandwidth.This isshowninthenumericalexampleofFigure11.Ofallexamples,thesignalhereappearstobethemost complexone.Thatthissignalcanbepredictedinrealtimetwotimepointsaheadbythesimplemechanism ofdelay‐inducednegativegroupdelay,Eq. 8 ,isnottrivial. |H|, , |H|, , |H|, , Figure8:TheoryIII‐Multipledelays. Firstrow:LowpassDINGDsystemwithgroupdelayof‐1.Shownaregainandphaseoffrequencyresponse functionaswellascorrespondinggroupdelayforthelowpasssystemwithparametersstatedinthetext andalsoprovidedinthefiguretitles b 1 .Again,theleftcolumnhastheoreticalparametersthatcause aconstantNGDforallfrequencies,andtherightcolumnhasmorerealisticparameters. Thegraphsinthe leftcolumnareidenticaltothegraphsofthecascadedsysteminFigure6toprow,leftcolumn . Secondrow:HighpassDINGDsystemwithgroupdelayof‐1. Thirdrow:BandpassDINGDsystemwithgroupdelayof‐2.Thetwodelaysarenowtwiceaslargeasbefore, i.e.,τ1=2andτ2=4.Forlegends,pleaserefertoFigure6. |H|, , Power y(t - 1) y(t) CCF x, y Figure9:LowpassDINGDsystem. Firstrow:Thefirst100datapointsof a lowpass filtered noise signal x t withanaddedsinusoidalsignalwith frequency 0.01 and its prediction signal y t . Due to the very low frequency component of the sinusoidal, relatively long transients ofthepredictionsignalarevisiblefor smallt. Second row, left: The cross‐ correlationfunctionhasapeakvalue of CCF ‐1 0.94. This shows that y t‐1 x t ,or,equivalently,y t x t 1 .Therefore,y t isapredictor of x t . Center and right: The scatterplotsconfirmthaty t ismore correlatedwithx t 1 thanwithx t . Third row: Power spectral density functionestimatesforx t andy t . Fourth row: Gain and phase of the frequency response function as well ascorrespondinggroupdelay.Shown areanalyticvaluesasprovidedinthe textaswellasgainandphasevalues estimatedfromthedata,asshownin the legend. The large estimation errors of gain and phase for frequencies 0.35areduetothelack of input signal power for those frequencies. Signalandpredictionparameters:Thesignalx t consistsof1000samplesofwhitenoise,low‐passfiltered with a Butterworth filter of seventh order with a cutoff frequency of 0.30 with an added sine signal of amplitude0.5andfrequency0.01.TheparametersofEq. 8 areb 3.00,c1 1.65,c2 0.80,τ1=1,τ2= 2. |H|, , Power y(t - 1) y(t) CCF x, y Figure10:HighpassDINGDsystem. First row: A highpass filtered noise signal x t and its prediction signal y t . Out of 1000 simulated time points, 50 are shown. Similar to Figure4,itisevidentthatpatternsof datapointsthatarenotformedbythe envelope of an oscillatory signal are predictedwell. Second row, left: The cross‐ correlationfunctionhasapeakvalue of CCF ‐1 0.89. This shows that y t‐1 x t ,or,equivalently,y t x t 1 .Therefore,y t isapredictor of x t . Center and right: The scatterplotsconfirmthaty t ismore correlatedwithx t 1 thanwithx t . Third row: Power spectral density functionestimatesforx t andy t . Fourth row: Gain and phase of the frequency response function as well ascorrespondinggroupdelay.Shown areanalyticvaluesasprovidedinthe textaswellasgainandphasevalues estimatedfromthedata,asshownin the legend. The large estimation errors of gain and phase for frequencies 0.15areduetothelack of input signal power for those frequencies. Signal and prediction parameters: The signal x t consists of 1000 samplesofwhitenoise,low‐passfilteredwithaButterworthfilterofseventhorderwithacutofffrequency of0.20.TheparametersofEq. 8 areb ‐2.00,c1 ‐1.92,c2 0.96,τ1=1,τ2=2. |H|, , Power y(t - 2) y(t) CCF x, y Figure 11: Band‐limited noise III – Bandpass DINGD system with group delayof‐2. First row: A bandpass filtered noise signal x t and its prediction signal y t . Out of 1000 simulated time points,50areshown. Second row, left: The cross‐ correlationfunctionhasapeakvalue of CCF ‐2 0.90. This shows that y t‐2 x t ,or,equivalently,y t x t 2 .Therefore,y t isapredictor of x t . Center and right: The scatterplotsconfirmthaty t ismore correlatedwithx t 2 thanwithx t . Third row: Power spectral density functionestimatesforx t andy t . Fourth row: Gain and phase of the frequency response function as well ascorrespondinggroupdelay.Shown areanalyticvaluesasprovidedinthe textaswellasgainandphasevalues estimatedfromthedata,asshownin the legend. The large estimation errors of gain and phase for frequencies between 0.1 and 0.4 are duetothelackofinputsignalpower for those frequencies. Remarkably, the groupdelayis constant ‐2for all frequencies. Signal and prediction parameters: The signal x t consists of 1000 samples of white noise, bandpass filtered with a Butterworth filter of seventh order with a cutoff frequenciesof0.12and0.38.TheparametersofEq. 8 areb ‐2.50,c1 ‐1.90,c2 0.94,τ1=2,τ2=4. TheMATLABcodeforgeneratingthisfigureisavailablefromtheauthoronrequest. Conclusionsanddiscussion Averysimplediscrete‐timepredictorbasedondelayedfeedback‐inducedNGDhasbeendescribed.This delay‐induced NGD or DINGD predictor predictsfuture signal values by using present input and past output,oralreadypredicted,signalvalues.Itthusdiffersfrommostotherpredictorsorforecastingmodels, whichdonottakeintoaccountpastpredictedbutonlypast inputsignalvalues 24,25 . Anexception would be systems that use anticipatory synchronization for prediction 26 . In other words, most conventionaltimeseriespredictorscanbewrittenintheform Conventionalpredictor:predictedx t 1 f x t , x t 1 , x t 2 , … , inwhichf . isaspecificmodelofthetimeseriestobepredicted.Theseconventionalpredictorsdepend onpriorobservationsbutnotpriorpredictions,andusuallycontaincoefficientsresultingfromafittoa fixed learning data set or which are continuously being updated 27 . In contrast, the DINGD predictor cannotbewritteninthisexplicitform,asitdependsalsoonalreadypredictedvalues.Forexample,all DINGDpredictorswithpredictionhorizonof1consideredabovecanbewrittenas DINGDpredictor:predictedx t 1 y t g x t , y t 1 , y t 2 , … , where g . is a function depending on the spectral content of the time series to be predicted. This expressionisfundamentallydifferenttotheanalogousexpressionforconventionalpredictionabove.For example,Eq. 1 withτ 2andc 1,whenthegroupdelayis‐1andthepredictionhorizonequals1,could bewrittenas predictedx t 1 y t bx t y t 2 . Itisapparentlynotpossibleinthiscasetoexpressthepredictedx t 1 inclosedformasafunctionofa finite number of past values of x t only. Rather, the DINGD predictor resembles a dynamic form of prediction, also called anticipatory relaxation dynamics 14 , than conventional prediction. It is this dynamicoriginofpredictionthatmakestheDINGDpredictor,andpossibleotherNGD‐basedprediction, socounterintuitive.However,avoidingpastinputvaluesmightbeadvantageousforpredictionbynatural and artificial neuronal networks as only already predicted, internalized states need to be laid down in memory. Inaddition,theDINGDpredictordoesnotrequirealearningdatasetbutisatruereal‐timepredictoronce thecoefficientshavebeenfixedandthedynamicshavesettledintoasteadystate.Asthenon‐stationary chirpsignalexampleshaveindicated,itisworthlookingintothereal‐timeadvantagesofthisprediction schemecomparedtoadaptivepredictionalgorithmsaswell.Furthermore,ithasbeendemonstratedhere thattheDINGDpredictorisabletopredictcomplexnon‐smoothsignals,too,addinginsightsbeyondthe contemporaryunderstandingofNGD 7,10,28 . ItwouldbeinterestingifDINGDpredictorscouldbeappliedorphysicallyimplementedinsomeway.Of particularinterestcouldbethefactthatonlypastpredictedsignalsareusedforprediction.Itmeansfor exampleforapredictiveagentsuchasarobot 29 orthebrain 30,31 thatonlyinternalstatevariables areneededforprediction,withouthavingtostoresensoryinputsinmemory.Further,themainingredient fortheDINGDpredictoraretimedelays,whichareabundantinthecentralnervoussystemincludingthe cerebellum 32,33 . Acknowledgment IwouldliketothankBlaiseRavelofordiscussions. References 1 V.G.Veselago:"Theelectrodynamicsofsubstanceswithsimultaneouslynegativevaluesofεandμ,"Sov PhysUspekhi,vol.10,pp.509‐514,1968. 2 C. G. B. Garrett, and D. E. McCumber: "Propagation of a gaussian light pulse through an anomalous dispersionmedium,"PhysRevA,vol.1,pp.305‐&,1970. 3 S.Chu,andS.Wong:"Linearpulse‐propagationinanabsorbingmedium," PhysRevLett,vol.48,pp. 738‐741,1982. 4 B.Segard,andB.Macke:"Observationofnegativevelocitypulse‐propagation,"PhysLettA,vol.109,pp. 213‐216,1985. 5 D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat‐Nasser, and S. Schultz: "Composite medium with simultaneouslynegativepermeabilityandpermittivity,"PhysRevLett,vol.84,pp.4184‐4187,2000. 6 J.F.Woodley,andM.Mojahedi:"Negativegroupvelocityandgroupdelayinleft‐handedmedia," Phys RevE,vol.70,pp.046603,2004. 7 G.Dolling,C.Enkrich,M.Wegener,C.M.Soukoulis,andS.Linden:"Simultaneousnegativephaseand groupvelocityoflightinametamaterial,"Science,vol.312,pp.892‐894,2006. 8 O. F. Siddiqui, S. J. Erickson, G. V. Eleftheriades, and M. Mojahedi: "Time‐domain measurement of negative group delay in negative‐refractive‐index transmission‐line metamaterials," IEEE Trans MicrowaveTheoryTech,vol.52,pp.1449‐1454,2004. 9 G.Monti,andL.Tarricone:"Negativegroupvelocityinasplitringresonator‐coupledmicrostripline," ProgressinElectromagneticsResearch,vol.94,pp.33‐47,2009. 10 S.Lucyszyn,I.D.Robertson,andA.H.Aghvami:"Negativegroupdelaysynthesizer,"ElectronLett,vol. 29,pp.798‐800,1993. 11 U.Martin,andH.W.Schussler:"Ondigital‐systemswithnegativegroupdelay,"Frequenz,vol.47,pp. 106‐113,1993. 12 T. Nakanishi, K. Sugiyama, and M. Kitano: "Demonstration of negative group delays in a simple electroniccircuit,"AmJPhys,vol.70,pp.1117‐1121,2002. 13 M.Kitano,T.Nakanishi,andK.Sugiyama:"Negativegroupdelayandsuperluminalpropagation:An electroniccircuitapproach,"IEEEJSelTopQuant,vol.9,pp.43‐51,2003. 14 H.U.Voss:"Signalpredictionbyanticipatoryrelaxationdynamics,"PhysRevE,vol.93,pp.030201 R , 2016. 15 H.U.Voss:"Theleakyintegratorwithrecurrentinhibitionasapredictor,"NeuralComput,vol.28,pp. 1498–1502,2016. 16 H. U. Voss, and N. Stepp: "A negative group delay model for feedback‐delayed manual tracking," arXiv.org;inpressatJCompNeurosc,2016. 17 M.W.Mitchell,andR.Y.Chiao:"Negativegroupdelayand''fronts''inacausalsystem:Anexperiment withverylowfrequencybandpassamplifiers,"PhysLettA,vol.230,pp.133‐138,1997. 18 N. S. Bukhman: "On the reality of supraluminal group velocity and negative delay time for a wave packetinadispersionmedium,"TechnicalPhysics,vol.47,pp.132‐134,2002. 19 H.U.Voss:"Anticipatingchaoticsynchronization,"PhysRevE,vol.61,pp.5115‐5119,2000. 20 H.U.Voss:"Abackwardtimeshiftfilterfornonlineardelayed‐feedbacksystems,"PhysLettA,vol.279, pp.207‐214,2001. 21 B.Ravelo:"ElementaryNGDIIR/FIRsystems,"IntJSignalProcSystems,vol.2,pp.132‐138,2014. 22 E. Pastalkova, V. Itskov, A. Amarasingham, and G. Buzsaki: "Internally generated cell assembly sequencesintherathippocampus,"Science,vol.321,pp.1322‐1327,2008. 23 M.Kandic,andG.E.Bridges:"Limitsofnegativegroupdelayphenomenoninlinearcausalmedia,"Prog ElectromagnRes,vol.134,pp.227‐246,2013. 24 M.Casdagli:"Nonlinearpredictionofchaotictime‐series,"PhysicaD,vol.35,pp.335‐356,1989. 25 P.J.Brockwell,andR.A.Davis:"IntroductiontoTimeseriesandForecasting" Springer2002,2nd edn . 26 H.U.Voss:"Synchronizationofreconstructeddynamicalsystems,"Chaos,vol.13,pp.327‐334,2003. 27 H.U.Voss,J.Timmer,andJ.Kurths:"Nonlineardynamicalsystemidentificationfromuncertainand indirectmeasurements,"IntJBifurcatChaos,vol.14,pp.1905‐1933,2004. 28 H.R.Dajani,andJ.C.H.Lam:"Predictionofpulsatilephysiologicalsignalsusinganegativegroupdelay circuit,"Proceedingsofthe1stWSEASInternationalConferenceonBiomedicalElectronicsandBiomedical Informatics,pp.91‐96,2008. 29 A.Alvarez‐Aguirre,N.vandeWouw,T.Oguchi,andH.Nijmeijer:"Predictor‐basedremotetracking controlofamobilerobot,"IEEETContrSystT,vol.22,pp.2087‐2102,2014. 30 R.Nijhawan,andS.Wu:"Compensatingtimedelayswithneuralpredictions:arepredictionssensory ormotor?,"PhilosTRSocA,vol.367,pp.1063‐1078,2009. 31 M.Bar:"Predictionsinthebrain:Usingourpasttogenerateafuture" OxfordUniversityPress2011 . 32 V.Braitenberg:"Isthecerebellarcortexabiologicalclockinthemillisecondrange?,"ProgBrainRes, vol.25,pp.334‐346,1967. 33 S.M.Crook,G.B.Ermentrout,andM.C.Vanier:"Theroleofaxonaldelayinthesynchronizationof networksofcoupledcorticaloscillators,"JComputNeurosci,vol.4,pp.161‐172,1997.
© Copyright 2026 Paperzz