General Certificate of Education Advanced Subsidiary Examination June 2011 Mathematics MS/SS1B Unit Statistics 1B Statistics Unit Statistics 1B Friday 20 May 2011 d 1.30 pm to 3.00 pm e For this paper you must have: * the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. s n Time allowed * 1 hour 30 minutes e Instructions * Use black ink or black ball-point pen. Pencil should only be used for drawing. * Fill in the boxes at the top of this page. * Answer all questions. * Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin. * You must answer the questions in the spaces provided. Do not write outside the box around each page. * Show all necessary working; otherwise marks for method may be lost. * Do all rough work in this book. Cross through any work that you do not want to be marked. * The final answer to questions requiring the use of tables or calculators should normally be given to three significant figures. d n o C Information * The marks for questions are shown in brackets. * The maximum mark for this paper is 75. * Unit Statistics 1B has a written paper only. Advice * Unless stated otherwise, you may quote formulae, without proof, from the booklet. P38946/Jun11/MS/SS1B 6/6/6/ MS/SS1B 2 The number of matches in each of a sample of 85 boxes is summarised in the table. 1 Number of matches Number of boxes Less than 239 1 239–243 1 244–246 2 247 3 248 4 249 6 250 10 251 13 252 16 253 20 254 5 255–259 3 More than 259 1 Total 85 For these data: (a) (i) state the modal value; (ii) determine values for the median and the interquartile range. (1 mark) (3 marks) Given that, on investigation, the 2 extreme values in the above table are 227 and 271 : (b) (i) calculate the range; (ii) calculate estimates of the mean and the standard deviation. (c) (02) (1 mark) (4 marks) For the numbers of matches in the 85 boxes, suggest, with a reason, the most appropriate measure of spread. (2 marks) P38946/Jun11/MS/SS1B 3 The diameter, D millimetres, of an American pool ball may be modelled by a normal random variable with mean 57.15 and standard deviation 0.04 . 2 Determine: (a) (i) PðD < 57:2Þ ; (3 marks) (ii) Pð57:1 < D < 57:2Þ . (2 marks) A box contains 16 of these pool balls. Given that the balls may be regarded as a random sample, determine the probability that: (b) (i) all 16 balls have diameters less than 57.2 mm; (2 marks) (ii) the mean diameter of the 16 balls is greater than 57.16 mm. (4 marks) During a particular summer holiday, Rick worked in a fish and chip shop at a seaside resort. 3 (a) He suspected that the shop’s takings, £y, on a weekday were dependent upon the forecast of that day’s maximum temperature, x C, in the resort, made at 6.00 pm on the previous day. To investigate this suspicion, he recorded values of x and y for a random sample of 7 weekdays during July. (i) x 23 18 27 19 25 20 22 y 4290 3188 5106 3829 5057 4264 4485 Calculate the equation of the least squares regression line of y on x. (4 marks) (ii) Estimate the shop’s takings on a weekday during July when the maximum temperature was forecast to be 24 C. (2 marks) (iii) Explain why your equation may not be suitable for estimating the shop’s takings on a weekday during February. (1 mark) (iv) Describe, in the context of this question, a variable other than the maximum temperature, x, that may affect y. (1 mark) Seren, who also worked in the fish and chip shop, investigated the possible linear relationship between the shop’s takings, £z, recorded in £000s, and each of two other explanatory variables, v and w. (b) (i) She calculated correctly that the regression line of z on v had a z-intercept of 1 and a gradient of 0.15 . Draw this line, for values of v from 0 to 40, on Figure 1 on page 4. s (03) Turn over P38946/Jun11/MS/SS1B 4 (ii) She also calculated correctly that the regression line of z on w had a z-intercept of 5 and a gradient of 0.40 . Draw this line, for values of w from 0 to 10, on Figure 2 below. (3 marks) Figure 1 z~ 6– 5– 4– 3– 2– 1– 10 20 30 40 ~ 0– 0 v 1 – Figure 2 z~ 6– 5– 4– 3– 2– 1– 2 4 6 8 10 ~ 0– 0 w 1 – (04) P38946/Jun11/MS/SS1B 5 Rice that can be cooked in microwave ovens is sold in packets which the manufacturer claims contain a mean weight of more than 250 grams of rice. 4 The weight of rice in a packet may be modelled by a normal distribution. A consumer organisation’s researcher weighed the contents, x grams, of each of a random sample of 50 packets. Her summarised results are: X x ¼ 251:1 and ðx xÞ2 ¼ 184:5 (a) Show that, correct to two decimal places, s ¼ 1:94 , where s 2 denotes the unbiased estimate of the population variance. (1 mark) (b) (i) Construct a 96% confidence interval for the mean weight of rice in a packet, giving the limits to one decimal place. (4 marks) (ii) Hence comment on the manufacturer’s claim. (2 marks) The statement ‘250 grams’ is printed on each packet. (c) Explain, with reference to the values of x and s, why the consumer organisation may consider this statement to be dubious. (2 marks) Emma visits her local supermarket every Thursday to do her weekly shopping. 5 (a) The event that she buys orange juice is denoted by J , and the event that she buys bottled water is denoted by W . At each visit, Emma may buy neither, or one, or both of these items. (i) Complete the table of probabilities, printed below, for these events, where J ’ and W ’ denote the events ‘not J ’ and ‘not W ’ respectively. (3 marks) (ii) Hence, or otherwise, find the probability that, on any given Thursday, Emma buys either orange juice or bottled water but not both. (2 marks) (iii) Show that: (A) the events J and W are not mutually exclusive; (B) the events J and W are not independent. Turn over s (05) (3 marks) P38946/Jun11/MS/SS1B 6 Rhys visits the supermarket every Saturday to do his weekly shopping. Items that he may buy are milk, cheese and yogurt. (b) The The The The probability, PðMÞ , that he buys milk on any given Saturday is 0.85 . probability, PðCÞ , that he buys cheese on any given Saturday is 0.60 . probability, PðY Þ , that he buys yogurt on any given Saturday is 0.55 . events M, C and Y may be assumed to be independent. Calculate the probability that, on any given Saturday, Rhys buys: none of the 3 items; (2 marks) (ii) exactly 2 of the 3 items. (3 marks) (i) J J’ 0.65 W W’ Total 0.15 Total 0.30 1.00 An amateur tennis club purchases tennis balls that have been used previously in professional tournaments. 6 The probability that each such ball fails a standard bounce test is 0.15 . The club purchases boxes each containing 10 of these tennis balls. Assume that the 10 balls in any box represent a random sample. Determine the probability that the number of balls in a box which fail the bounce test is: (a) at most 2 ; (1 mark) (ii) at least 2 ; (2 marks) (iii) more than 1 but fewer than 5 . (3 marks) (i) Determine the probability that, in 5 boxes, the total number of balls which fail the bounce test is: (b) (i) more than 5 ; (ii) at least 5 but at most 10 . (06) (2 marks) (3 marks) P38946/Jun11/MS/SS1B 7 Three airport management trainees, Ryan, Sunil and Tim, were each instructed to select a random sample of 12 suitcases from those waiting to be loaded onto aircraft. 7 (a) Each trainee also had to measure the volume, x, and the weight, y, of each of the 12 suitcases in his sample, and then calculate the value of the product moment correlation coefficient, r, between x and y. * * Ryan obtained a value of 0.843 . Sunil obtained a value of þ0.007 . Explain why neither of these two values is likely to be correct. (2 marks) Peggy, a supervisor with many years’ experience, measured the volume, x cubic feet, and the weight, y pounds, of each suitcase in a random sample of 6 suitcases, and then obtained a value of 0.612 for r. (b) * * Ryan and Sunil each claimed that Peggy’s value was different from their values because she had measured the volumes in cubic feet and the weights in pounds, whereas they had measured the volumes in cubic metres and the weights in kilograms. Tim claimed that Peggy’s value was almost exactly half his calculated value because she had used a sample of size 6 whereas he had used one of size 12 . Explain why neither of these two claims is valid. (2 marks) Quentin, a manager, recorded the volumes, v, and the weights, w, of a random sample of 8 suitcases as follows. (c) (i) v 28.1 19.7 46.4 23.6 31.1 17.5 35.8 13.8 w 14.9 12.1 21.1 18.0 19.8 19.2 16.2 14.7 Calculate the value of r between v and w. (ii) Interpret your value in the context of this question. (3 marks) (2 marks) END OF QUESTIONS Copyright ª 2011 AQA and its licensors. All rights reserved. (07) P38946/Jun11/MS/SS1B MS/SS1B Q 1 (a)(i) Solution (ii) Marks Total Comments Mode = 253 B1 1 Median = 252 B1 CAO B1 CAO; either May be implied by IQR = 3 CAO Upper quartile = 253 Lower quartile = 250 Interquartile range = 3 B1 3 CAO; do not award if seen to be not based on 253 and 250 Range = 271 – 227 = 44 B1 1 CAO; do not award if seen to be not based on 271 and 227 (ii) Mean, x = 251 to 251.4 Award B1 if divisor seen not to be 85 but answer in range B2 (b)(i) AWFW Note: If B0 then can award M1 for attempt at fx 85 seen Standard deviation, fx = 21352 x = 251.2 Ignore notation and condone incorrect midpoints (eg upper or lower limits used) s or = 4.21 to 4.28 B2 4 AWFW = 4.217 fx 2 = 5365134 s = 4.242 Award B1 if divisor seen not to be 84 or 85 but answer in range (c) Interquartile range (IQR) B1 Not affected by unknown/large/small/extreme/ outlying/227 & 271 values Bdep1 Named 2 Or equivalent Dependent on previous B1 Only negative comments on other measures Bdep0 More than one named B0 Bdep0 Range B0 Bdep0 OR Standard deviation (s or ) Named (B1) Uses all data values Or equivalent Dependent on previous (B1) (Bdep1) Only negative comments on other measures Bdep0 Total 11 MS/SS1B (cont) Q 2 Solution Marks Diameter, D ~ N(57.15, 0.042) 57.2 57.15 P(D < 57.2) = P Z 0.04 (a)(i) Total Comments M1 Standardising 57.2 with 57.15 and 0.04; allow (57.15 – 57.2) = P(Z < 1.25) A1 CAO; ignore inequality and sign May be implied by a correct answer = 0.894 to 0.895 A1 = p – (1 – p) M1 = 2 × 0.89435 – 1 = 0.788 to 0.79(0) A1 3 AWFW (0.89435) (ii) P(57.1 < D < 57.2) Allow even if incorrect standardising providing p – (1 – p) seen May be implied by a correct answer 2 (b)(i) P(16 balls < 57.2) = p16 0 < p < 1 M1 = [(a)(i)]16 = (0.89435)16 = 0.166 to 0.17(0) A1 (ii) with 2 = P(Z > 1) = 1 – P(Z < 1) = 1 – 0.84134 = = 0.158 to 0.159 AWFW B1 M1 Standardising 57.16 with 57.15 and 0.01 or equivalent; allow (57.15 – 57.16) m1 Area change May be implied by a correct answer or answer < 0.5 A1 4 Notes: Ignore partial/incomplete attempts at (ii) in (i) if followed by correct method AWFW (0.15866) (1 – answer) B1 M1 max Mark two complete answers in (i) as two attempts so (0 + 2)/2 1max Answer to (i) or (ii) repeated Mark as per scheme; thus (2 max, 0) or (0, 4 max) Total (0.16754) CAO Stated or used (see Notes below) CAO If only seen in (b)(i), allow just B1 Sd of D16 = 0.04/16 = 0.01 57.16 57.15 P D16 57.16 = P Z 0.01 (0.78870) Any probability to power 16 or 1 – p16; do not allow multiplying factors If only seen in (b)(ii), allow just M1 Variance of D16 = 0.042/16 = 0.0001 or AWFW 11 MS/SS1B (cont) Q 3 Solution Marks b (gradient) = 191 b (gradient) = 190 to 192 (a) Total B2 (B1) Comments CAO AWFW Treat rounding of correct answers as ISW a (intercept) = 115 a (intercept) = 93 to 137 B2 (B1) 4 CAO AWFW OR Attempt at x x 2 y & xy or Attempt at S xx & S xy y 154 3452 30219 & 677042 (133170091) (all 4 attempted) 2 (M1) S 12224 & 64 (2714668) (both attempted) yy Attempt at correct formula for b (gradient) b (gradient) = 191 a (intercept) = 115 (m1) (A1) (A1) CAO CAO If a and b are not identified anywhere in question, then: 190 to 192 B1 93 to 137 B1 Accept a & b interchanged only if identified and used correctly in (ii) (ii) y24 = 115 + 191 × 24 = £4699 or £4700 = £4650 to £4750 SC: (4290 + 5057)/2 = 4673 to 4674 B1 If B0 but clear evidence of correct use of c’s equation with x = 24 (iii) (Maximum) temperature (in February) is likely to be/will be lower/different B2 (B1) 2 B1 Rainfall amount/wind strength/sunshine hours/ daylight hours/opening times/day of week/ visitor numbers/public holidays/school holidays/ local attractions/etc 1 B1 1 Allow if at least 1 variable correctly identified Total (£4699) (M1) Must imply a temperature comparison with July (iv) Either; ignore units AWFW 8 Or equivalent; must be clear indication that (max) temperature is less than/different Extrapolation/not July/not summer/winter/etc B0 Or equivalent Accept any sensible reason; do not penalise for dubious ‘variable name’ so, for example, accept ‘rainfall’ Minimum/average temp/etc B0 Quality or price of food/ staff/etc B0 MS/SS1B (cont) Q 3 Solution Marks Total Comments (b) Any line (straight, freehand, curve) from (0, –1) on Figure 1 or from (0, 5) on Figure 2 B1 Accept clear marking of (0, –1) or (0, 5) with no line (i) Straight, not freehand, line from (0, –1) to (40, 5) on F1 only; allow line extensions and only very minor inaccuracies in points plotted B1 (10, 0.5) (ii) Straight , not freehand, line from (0, 5) to (10, 1) on F2 only; allow line extensions and only very minor inaccuracies in points plotted B1 3 Notes: Both lines on F1 B1 B1 B0 max Both lines on F2 B1 B0 B1 max >1 undeleted line on either F1 or F2 2 max Total 3 (2, 4.2) (20, 2) (4, 3.4) (30, 3.5) (6, 2.6) (8, 1.8) MS/SS1B (cont) Q 4 (a) Solution 184.5 49 or Marks 50 1.92 49 B1 Total 1 = 1.94 (b) (i) 96% (0.96) z = 2.05 to 2.06 s n CI for is x z Thus 251.1 2.0537 Hence or 1.94 50 or 49 251.1 0.6 Comments Fully correct expression or equivalent must be seen Note: s 184.5 50 1.939 B0 AG B1 AWFW M1 Used with 251.1 and 1.94 correctly Must have n with n > 1 AF1 F on z only Adep1 4 (250.5, 251.7) (2.0537) CAO/AWRT Dependent on AF1 but not on z so can be gained using an incorrect z AWRT (ii) Claim is > 250 Clear correct comparison of 250 with LCL or CI so Claim is supported/reasonable/correct/true/etc Must be consistent with c’s comparison (c) x ns = 251.1 n 1.94 < 250 SC: Quoted values of 249.2, 247.2 or 245.3 (AWRT) M1 BF1 Bdep1 F on CI 2 Dependent on BF1 Allow any multiple of 1.94 Must clearly indicate the value of a numerical expression giving a result less than 250 M1 so Some individual packets are likely to/will contain less than 250 grams A1 Total (250 < LCL or CI) 2 9 Or equivalent MS/SS1B (cont) Q 5 (a)(i) Solution W W Total J 0.55 0.15 0.70 J 0.10 0.20 0.30 Marks Total 0.65 0.35 1.00 Total B1 0.35 and 0.7; CAO B1 0.55; CAO B1 3 Notes: Use of Venn or tree diagrams without table completion B0 B0 B0 Printed table not completed but constructed and completed on Page 12/13 B1 B1 B1 max (ii) P(purchases exactly one) = P W J 0.15 (iii) (A) Only c’s equivalent to 0.10 shown and added to 0.15 Can be implied by correct answer M1 = 0.10 + 0.15 = 0.25 or 25/100 or 5/20 or 1/4 A1 P W J = 0.8 &/ P W P J = 1.35 B1 2 &/ P W = 0.65 or Bdep1 P J | W 0.55 0.65 = 0.85 Do not accept use of W and/or J AWRT 3 &/ P J = 0.70 or CAO Any one of these three seen Ignore contradictions, explanations & justifications B1 P W | J 0.55 0.70 = 0.79 0.1 and 0.2; CAO Accept fractional answers Do not accept percentages or P W J = 0.55 (>0); accept if indicated in a Venn diagram or P W P J = 1.35 >0 or impossible (B) Comments P W P J = 0.45 to 0.46 Any one of these three seen Ignore contradictions, explanations & justifications AWFW &/ P W J = 0.55 (b) (i) Do not allow multiplying factors in (b) P(0) = 0.15 × 0.40 × 0.45 B1 = 0.027 or 27/1000 (ii) P(2) = 0.85 × 0.60 × 0.45 = 0.2295 + 0.85 × 0.40 × 0.55 = 0.1870 + 0.15 × 0.60 × 0.55 = 0.0495 or B1 2 For either method: At least two bold expressions correct Only one bold expression correct Can be implied by correct answer For second method: Must have ‘1 –’ for any marks M2 (M1) = 1 – (0.027 + 0.2265 + 0.2805) = 0.466 or 466/1000 or 233/500 Total A1 Can be implied by correct answer or 1 – (0.2265 + 0.466 + 0.2805) CAO 3 13 CAO; do not imply this from (i) MS/SS1B (cont) Q 6 (a) (i) Solution X ~ B(10, 0.15) P(X 2) = 0.82(0) Marks Total B1 1 Comments AWRT (0.8202) (ii) P(X ≥ 2) = 1 – P(X 1) = 1 – (0.5443 or 0.8202) M1 = 0.455 to 0.456 A1 (iii) P(1 < X < 5) = 0.9901 or 0.9986 (p1) M1 minus 0.5443 or 0.1969 (p2) M1 = 0.445 to 0.446 A1 OR B(10, 0.15) expressions stated for at least 3 terms within 1 X 5 gives probability = 0.445 to 0.446 (b) Requires ‘1 –’ Accept 3/2 dp rounding or truncation Can be implied by 0.455 to 0.456 but not by 0.179 to 0.18(0) 2 AWFW (0.4557) Accept 3 dp rounding or truncation p2 – p1 M0 M0 A0 (1 – p2) – p1 M0 M0 A0 p1 – (1 – p2) M1 M0 A0 only providing result > 0 Accept 3 dp rounding or truncation 3 AWFW (0.4458) (M1) Can be implied by a correct answer (A2) AWFW (0.4458) Normal approximation 0 marks Y ~ B(50, 0.15) (i) P(Y > 5) = 1 – P(Y 5) = 1 – (0.2194 or 0.1121) M1 = 0.78(0) to 0.781 A1 (ii) P(5 ≤ Y ≤ 10) = 0.8801 or 0.7911 (p1) M1 minus 0.1121 or 0.2194 (p2) M1 = 0.768 A1 OR B(50, 0.15) expressions stated for at least 3 terms within 4 Y 10 gives probability = 0.768 Total 2 Requires ‘1 –’ Accept 3 dp rounding or truncation Can be implied by 0.78(0) to 0.781 but not by 0.888 to 0.89 AWFW (0.7806) Accept 2/3 dp rounding or truncation p2 – p1 M0 M0 A0 (1 – p2) – p1 M0 M0 A0 p1 – (1 – p2) M1 M0 A0 only providing result > 0 Accept 3 dp rounding or truncation 3 AWRT (0.7680) (M1) Can be implied by a correct answer (A2) AWRT 11 (0.7680) MS/SS1B (cont) Q 7 Solution Marks (a) Ryan: Value indicates that as volume increases then weight decreases B1 Sunil: Value indicates no correlation/relationship/ association/link between volume and weight B1 SC: If B0 B0: Would expect weight to increase with volume or Would expect strong(er) positive correlation between weight and volume (b) Ryan & Sunil: r is not affected by units/(linear) scaling Tim: r is not affected by sample size or 2 × 0.612 > 1 impossibility (c) (i) r = 0.541 to 0.543 r = 0.54 to 0.55 r = 0.5 to 0.6 Total Comments Or equivalent in context 2 (B1) Or equivalent in context Or equivalent in context B1 Or equivalent B1 2 Either; or equivalent B3 (B2) (B1) 3 AWFW AWFW AWFW (0.54186) OR Attempt at 216 6633.16 136 2376.84 3795.5 (all 5 attempted) Accept notation of x and y 801.16 64.84 & 123.5 (all 3 attempted) v v2 w w2 & vw (M1) or Attempt at Svv Sww & Svw Attempt at substitution into correct corresponding formula for r r = 0.541 to 0.543 (m1) (A1) AWFW Dependent on 0.5 ≤ r ≤ 0.6 Or equivalent; must qualify strength and state positive Bdep0 for very strong/strong/high/ good/average/medium/reasonable/ poor/very weak/little/etc (ii) (Quite or fairly) weak/some/moderate positive (linear) correlation/relationship/ association/link (but not ‘ trend’) between volumes and weights of suitcases Bdep1 B1 Total TOTAL & 2 9 75 Context; providing 0 < r < 1 Scaled mark unit grade boundaries - June 2011 exams A-level Code Title Max. Scaled Mark Scaled Mark Grade Boundaries and A* Conversion Points A* A B C D E MS1B MD02 MFP2 MM2B MPC2 MS2B XMCA2 MFP3 MM03 MPC3 MS03 MFP4 MM04 MPC4 MS04 MM05 GCE MATHEMATICS UNIT S1B GCE MATHEMATICS UNIT D02 GCE MATHEMATICS UNIT FP2 GCE MATHEMATICS UNIT M2B GCE MATHEMATICS UNIT PC2 GCE MATHEMATICS UNIT S2B GCE MATHEMATICS UNIT XMCA2 GCE MATHEMATICS UNIT FP3 GCE MATHEMATICS UNIT M03 GCE MATHEMATICS UNIT PC3 GCE MATHEMATICS UNIT S03 GCE MATHEMATICS UNIT FP4 GCE MATHEMATICS UNIT M04 GCE MATHEMATICS UNIT PC4 GCE MATHEMATICS UNIT S04 GCE MATHEMATICS UNIT M05 75 75 75 75 75 75 125 75 75 75 75 75 75 75 75 75 69 62 68 62 88 69 67 68 68 68 63 58 67 62 59 64 55 62 54 54 76 64 59 59 62 61 57 51 60 55 52 56 48 55 47 46 66 55 51 52 54 53 51 46 52 48 46 49 41 48 41 38 57 46 43 46 46 46 45 41 44 41 40 42 34 41 35 30 48 38 36 40 39 39 39 36 37 34 34 35 28 34 29 23 39 30 29 34 32 32 33 31 30 28 MEST1 MEST2 MEST3 MEST4 GCE MEDIA STUDIES UNIT 1 GCE MEDIA STUDIES UNIT 2 GCE MEDIA STUDIES UNIT 3 GCE MEDIA STUDIES UNIT 4 80 80 80 80 70 74 55 63 61 68 47 54 50 56 40 45 39 45 33 36 28 34 26 28 18 23 MHEB1 MHEB2 GCE MODERN HEBREW UNIT 1 GCE MODERN HEBREW UNIT 2 100 100 80 61 71 54 62 47 54 40 46 34 38 MUSC1 MUS2A MUS2B MUS2C GCE MUSIC UNIT 1 GCE MUSIC UNIT 2A GCE MUSIC UNIT 2B GCE MUSIC UNIT 2C 80 60 60 60 - 57 45 49 49 51 40 43 44 45 35 37 39 39 30 32 34 34 26 27 29
© Copyright 2026 Paperzz