Review of Derivatives, Integrals, Tangent Lines Solutions Manual Math 126E. 03/29/2011 (a) Recall: (sec x)0 = tan x sec x. Problem 1. 3 sec3 x tan x, f 0 (x) = Therefore, (sec3 x)0 = 3 sec2 x · tan x sec x = (sec3 x)0 (1 + x2 ) − sec3 x(1 + x2 )0 3 sec3 x tan x(1 + x2 ) − 2x sec3 x = . (1 + x2 )2 (1 + x2 )2 f 0 (x) is defined iff sec x = 1/ cos x and tan x = sin x/ cos x are defined, i.e. iff cos x 6= 0, x 6= π/2 + πn, where n ∈ Z (n is an integer). (b) dx3 d dy 2 2 2 2 2 2 2 2 = cos(ex ) + x3 cos(ex ) = 3x2 cos(ex ) + x2 · 2xex (− sin(ex )) = 3x2 cos(ex ) − 2x4 ex sin(ex ). dx dx dx (c) (a tan(bv))0v ab sec2 (bv) b cos−2 (bv) b du = = = = . dv a tan(bv) a tan(bv) sin(bv)/ cos(bv) sin(bv) cos(bv) (d) dy 1 d2 y d = 2 , = dt t + 1 dt2 dt 1 t2 + 1 =− 2t . (1 + t2 )2 Problem 2. (a) Let t = ln x. Then dt = dx/x, and the segment [e, e2 ] of integration changes to [1, 2]. So Z2 Ze2 dt dx = . I= x(ln x)p tp 1 e If p = 0, then I = R2 1 dt = 1. If p = 1, then I = Z2 I= 1 R2 1 dt/t = log t|t=2 t=1 = log 2. If p 6= 1, then t=2 t1−p 21−p − 1 t dt = = . 1 − p t=1 1−p −p (b) Integration by parts: u = x, v = −e−2x /2, v 0 = e−2x . Z Z Z Z −2x e−2x e −2x 0 0 xe dx = uv dx = uv − u vdx = −x − dx = 2 2 Z e−2x 1 xe−2x 1 −2x −x + e−2x dx = − − e + C. 2 2 2 4 (c) Z∞ 2/3 dx 1 = 2 9x + 4 9 Z∞ dx 1 = 2 x + 4/9 9 Z∞ 1 2/3 1 2 dt 3 2 2 ( 3 t) + 1 . Here, we have made the change of variables: t = 3/2x, x = 2/3t, dx = 2/3dt. This expression equals 12 93 Z∞ 1 dt 129 = 4 2 934 (t + 1) 9 Z∞ 1 dt 1 = 2 t +1 6 Z∞ t2 dt = +1 1 1 1 π π 1 · arctan t|t=∞ = − = . t=1 6 6 2 4 24π Problem 3. f 0 (x) = − 12 (1 − x)−1/2 . f 0 (0) = −1/2, f (0) = 1. Tangent line: y − f (0) = f 0 (0)(x − 0), √ y = 1 − 1/2x. Therefore, 0.99 = f (0.01) ≈ 1 − 0.01/2 = 0.995. 2
© Copyright 2026 Paperzz